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Abstract. The automata-theoretic approach for the verification of lin-
ear time properties involves checking the emptiness of a Büchi automa-
ton. However generalized Büchi automata, with multiple acceptance sets,
are preferred when verifying under weak fairness hypotheses. Existing
emptiness checks for which the complexity is independent of the number
of acceptance sets are all based on the enumeration of Strongly Con-
nected Components (SCCs).
In this paper, we review the state of the art SCC enumeration algorithms
to study how they can be turned into emptiness checks. This leads us to
define two new emptiness check algorithms (one of them based on the
Union-Find data structure), introduce new optimizations, and show that
one of these can be of benefit to a classic SCCs enumeration algorithm.
We have implemented all these variants to compare their relative perfor-
mances and the overhead induced by the emptiness check compared to
the corresponding SCCs enumeration algorithm. Our experiments shows
that these three algorithms are comparable.

1 Introduction

The automata-theoretic approach to explicit LTL model checking explores the
product between two ω-automata: one automaton that represents the system,
and the other that represents (the negation of) the property to check on this
system. This product corresponds to the intersection between the executions of
the system and the behaviors disallowed by the property. The property is verified
by the system if this product is empty.

Usually, a Büchi automaton is used to represent the property, and a Kripke
structure represents the model. However, it is possible to use generalized Büchi
automata (with several acceptance sets) to represent the property in a more
concise way, and such generalized acceptance condition can also be used on
the model to express weak fairness hypotheses on the system. In this work, we
further generalize the above approach using Transition-based Generalized Büchi
Automata (TGBA).

An emptiness check is an algorithm deciding whether such an automaton is
empty. A Büchi automaton is non-empty if it accepts an infinite word, i.e., if it
contains a lasso-shaped run: a finite prefix followed by an accepting cycle. Most
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explicit emptiness checks are based on a DFS exploration of the automaton;
they can be classified in two families. Nested Depth First Search algorithms [3]
use a second DFS to detect the accepting cycle: if the automaton has multiple
acceptance sets, this approach requires either a degeneralization, or multiple
nested DFS. The second family are algorithms based on the enumeration of
Strongly Connected Components (SCC), to find SCCs that contain accepting
cycles. In these algorithms the number of times a state or transitions is visited
is independent on the number of acceptance sets.

In this paper, we review the existing SCC enumeration algorithms to study
how they can be adapted to become emptiness checks. To be of practical use in
a model checker, we would like such emptiness checks to:

– support generalized Büchi acceptance [5, 12] (without requiring a degener-
alization, or multiple passes on the automaton),

– support an on-the-fly construction of the automaton so that we do not need
to construct unexplored parts of the product,

– be compatible with the bit-state hashing [15] and state-space caching [13]
techniques to deal cases where memory is a critical resource.

We focus on three SCC algorithms which we shall refer to as Tarjan [19],
Dijkstra [6], Gabow [8]. Tarjan is the most well-known algorithm to compute
SCC and it has been extended by Geldenhuys and Valmari [11] to check the
emptiness of (non-generalized) Büchi automata. Dijkstra’s SCC-enumeration al-
gorithm is a little less known, but has served as the base for several generalized
emptiness checks [12, 5, 1, 10]. Essentially, both these algorithms partition the
set of states according to the SCCs, and have a complexity that is linear with
respect to the size of the graph. An efficient data structure to deal with the
construction of a partition is the Union-Find [20] and Gabow [8] has suggested
an algorithm to label the SCCs of a graph using such a data structure; in this
context the number of Union-Find operations is linear in the size of the graph,
and the amortized time-complexity of these operations is quasi-constant (related
to the inverse of the Ackermann function) in the worst case. To our knowledge,
this suggested algorithm, which we call Gabow4, has never been experimented
to compute SCCs, let alone to perform an emptiness check.

Our contributions are as follows. (1) We show how to adapt Tarjan’s algo-
rithm to perform a generalized emptiness check. (2) We suggest an optimization
of Dijkstra’s algorithm that also benefits all the emptiness checks based on this
algorithm. (3) We extend Gabow’s idea to implement a Union-Find-based empti-
ness check. (4) Moreover we show how to adjust all these algorithms to support
bit-state hashing and state-space caching.

While our experiments shows that there is no algorithm that clearly outper-
forms the others, we believe that having the choice between these three differ-
ents schemes might prove useful to devise new extensions (such as parallel model
checking).

4 Beware! The main algorithm of Gabow’s paper [8] is a reinvention of Dijkstra’s al-
gorithm. Cf. http://www.cs.colorado.edu/~hal/Papers/DFS/pbDFShistory.html.
What we call Gabow’s algorithm here is the idea evoked on page 109 of that paper.

http://www.cs.colorado.edu/~hal/Papers/DFS/pbDFShistory.html
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This paper is organized as follows. Section 2 defines TGBAs and intro-
duces our notations. Sections 3–5 successively present Tarjan’s, Dijkstra’s, and
Gabow’s algorithms and discuss how that can be extended to perform empti-
ness checks. Section 6 discusses the compatibility of these algorithms with the
bit-state hashing and state-space caching techniques. Finally Section 7 provides
experimental data to compare all these algorithms.

2 Preliminaries

Let G = 〈Q, q0, δ〉 be a directed graph with Q the set of states, q0 the initial
state, and δ ⊆ Q×Q the set of transitions.

A path of length n ≥ 1 between two states q, q′ ∈ Q is a finite sequence of
edges ρ = (s1, s2)(s2, s3) . . . (sn, sn+1) with s1 = q and sn+1 = q′. We denote the
existence of such a path by q  q′. When q = q′ the path is a cycle.

A non-empty set S ⊆ Q is a Strongly Connected Component (SCC) iff
∀s, s′ ∈ S, s 6= s′ ⇒ s  s′ and S is maximal w.r.t. inclusion. A trivial SCC is
a state without self-loop.

A TGBA is a tuple A = 〈Q, q0, δ,F , f〉 where F is a finite set of acceptance
marks and f : δ 7→ 2F labels each transition of the directed graph 〈Q, q0, δ〉 by a
set of acceptance marks. Let us note that in a real model checker, transitions (or
states) of the automata would be labeled by atomic propositions, but we omit
this information as it is not pertinent to emptiness check algorithms.

A degeneralization process can transform any TGBA with n states and m
acceptances marks into an equivalent TGBA with one acceptance mark and at
most nm states.

An SCC S ⊆ Q is accepting iff
⋃
t∈(S×S)∩δ{f(t)} = F . A TGBA is non-empty

iff there is a path from q0 to an accepting SCC.
All the algorithms we consider are based on a DFS of a TGBA and we

can present them by specializing the generic DFS algorithm of Algo. 1. This
algorithm is slightly more complex than the average DFS, as we will use it in
various settings. The dfs variable is the stack of the DFS algorithm and stores:
a set acc of acceptance marks labeling the transition leading to the state pos,
and set succ of the unexplored successors of this state. The state pos is actually
represented by a Position, which shall be defined differently in each algorithm.

Each state is either LIVE, DEAD, or UNKNOWN. A state is UNKNOWN
until it has been explored by the DFS, then it becomes LIVE. A state may
only become DEAD after all the successors of the SCC it belongs to have been
visited. Maintaining this status will be done by each algorithm by implementing
the following methods:
– GET STATUS: returns the status of a state;
– PUSH: called for any newly visited state, it should mark that state as LIVE;
– UPDATE: called every time a back-edge (i.e., a transition leading to a LIVE

state) is found, this function detects a transition closing a cycle;
– POP: called every time the DFS backtracks a state. When the last state of an

SCC is being popped, all the states in its SCC must be marked as DEAD
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Algorithm 1: Generic DFS.

1 Input: A TGBA A = 〈Q, q0, δ,F , f〉

2 struct Step {acc: 2F , pos: Position, succ: 2δ}
3 struct Transition {src: Q, dst : Q}
4 dfs: stack of 〈Step〉

5 Position pos ← PUSH(q0)
6 dfs.push( 〈 ∅, pos, successors(q0)〉 )
7 while ¬ dfs.isEmpty()
8 Step step ← dfs.top()
9 if step.succ 6= ∅

10 Transition t ← pick one from step.succ
11 switch GET STATUS(t .dst) do
12 case DEAD
13 skip

14 case LIVE
15 UPDATE(f(t), t .dst)

16 case UNKNOWN
17 pos ← PUSH(t .dst)
18 dfs.push( 〈f(t), pos, successors(t .dst)〉 )

19 else
20 dfs.pop()
21 POP(step)

by POP. We call such a last state the root of the SCC (notice that this root
may depend on the order in which the transitions are visited).

3 Tarjan-based Algorithm

3.1 SCC Computation

In Tarjan’s original algorithm [19], each state is associated to two numbers: a
DFS number (indicating the order in which the states has been visited by the
DFS), and a lowlink . Initially, this lowlink is equal to the DFS number, but each
time a transition is backtracked (i.e., during UPDATE or POP) the lowlink of the
source is updated to the DFS number (for UPDATE) or to the lowlink (for POP)
of the destination if it is smaller. An SCC root is detected during POP as a state
whose lowlink is equal to the DFS number.

A usual optimization of POP is based on the fact that when a root is popped,
the (outside) states that are successors of this SCC have already been marked
as DEAD. Consequently, if the set of LIVE states is stored as a stack, then all
the states of the current SCC are on this stack between the position of the root
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Algorithm 2: Tarjan’s Algorithm.

1 struct P {lowlink : int; acc: 2F }
2 live: hstack of 〈Q 〉
3 dead : store of 〈Q 〉
4 dstack : stack of 〈P 〉

5 GET STATUS(q ∈ Q) → Status
6 if live.get(q) 6= -1
7 return LIVE

8 else if dead .has(q)
9 return DEAD

10 else
11 return UNKNOWN

12 UPDATE(acc ∈ 2F , d ∈ Q)

13 dstack .top().lowlink ←
14 min(dstack .top().lowlink ,
15 live.get(d))
16 dstack .top().acc ← acc ∪
17 dstack .top().acc
18 if dstack .top().acc = F
19 report counterexample found

Algorithm:

20 PUSH(q ∈ Q) → Position
21 Position p ← live.size()
22 live.push(〈q〉)
23 dstack .push(〈 p , ∅ 〉)
24 return p

25 POP(s ∈ Step)
26 〈ll , acc 〉 ← dstack .pop()
27 if ll = s.pos
28 // An SCC has been found.
29 while live.size() > s.pos
30 〈q〉 ← live.pop()
31 dead .add(q)

32 else
33 dstack .top().lowlink ←
34 min(dstack .top().lowlink ,ll)
35 dstack .top().acc ← s.acc ∪
36 dstack .top().acc ∪ acc
37 if dstack .top().acc = F
38 report counterexample found

and the top of the stack. They can therefore be marked as DEAD by unwinding
this stack, without exploring the graph.

Because a lowlink is only useful for states on dfs, it seems judicious to store
it into a dedicated stack denoted dstack . This stack stores elements of the form
〈lowlink , acc〉 where acc is only useful when doing an emptiness check.

As the states on dfs are LIVE, they are simply identified by their position on
live. We use this position instead of the DFS number when initializing lowlink .

To implement this live stack, we introduce a data structure hstack that
stores all LIVE states and can be manipulated like a stack (with push and pop).
To find the status of a state, we need to check whether it belongs to this hstack,
therefore this structure is equipped with a get method that looks up a hash table
to return the position associated to a given state, or −1 for missing states.

The set of DEAD states are represented by a separate data structure that
support the following two operations: add and has with obvious semantics. As
we shall discuss in Section 6, bit-state hashing and state-space caching can be
implemented by redefining these operations.

Algorithm 2 presents our refactoring of the original Tarjan’s algorithm to
fit in the framework of Algorithm 1. The blue dashed boxes should be ignored
on first read: they represent the parts to add to turn this SCC-enumeration
algorithm into an emptiness check for TGBA.
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Because LIVE and DEAD states are respectively stored in live and dead ,
GET STATUS can easily report all other states as UNKNOWN.

As explained previously, the lowlinks are updated everytime a transition is
backtracked, i.e., at lines 12–15 when backtracking a back-edge, and at 32–34
when backtracking a forward-edge inside an SCC. When POP detects the root of
an SCC (line 27), it simply unwind live to mark all the SCC’s states as DEAD.

3.2 Emptiness check

Adding the blue dashed boxes will turn the SCC enumeration algorithm into an
emptiness check algorithm. Each LIVE state on dfs is now associated to an empty
set of acceptance mark at line 1. This set is updated each time an edge intern to
an SCC is backtracked, at lines 16–17 and 35–36. These backtracking updates
will ultimately propagate to the root, the set of all acceptance marks present in
the SCC. Therefore, in the worse case, an accepting SCC will be detected when
the root is popped, but it may happens earlier if one of the intermediate set is
equal to F (hence the tests on lines 18 and 38).

To our knowledge, the only existing emptiness check based on Tarjan’s al-
gorithm has been proposed by Geldenhuys and Valmari [11]. Their algorithm
targets only degeneralized Büchi automata (one acceptance mark), so they may
have to explore a larger automaton that we do. However their algorithm works
quite differently from this one: they maintain the lowlink for each LIVE state
and a stack of LIVE accepting states (it would work for transition-based accep-
tance too) and they are therefore able to report a counterexample as soon as
they close an accepting cycle, while our algorithm would have to wait for an
accepting transition to be popped. This detection could be done earlier by asso-
ciating an acceptance set to each element of live. As we target memory efficience
this solution has not been retained.

4 Dijkstra-based Algorithms

4.1 SCC Computation

Intuitively, Dijkstra’s algorithm [6] maintains a stack of SCCs of the subgraph
that has been explored. Everytime a back-edge is found, closing a cycle, the
SCCs forming that cycle are merged.

In practice, Algorithm 3 (without the green dotted boxes) actually manages
three stacks: live, the set of LIVE states; dfs, the subset of live that are on
the DFS search path, represented—as in the previous section—by a stack of
positions in live; and roots, the stack of SCC roots, stored as positions in the
dfs stack. When given two consecutive roots, roots[i] and roots[i + 1], the set
of states belonging to the SCC rooted in roots[i], are the states at positions
dfs[roots[i]].pos, . . . , dfs[roots[i + 1]].pos − 1 in live. This representation makes
several operations efficient. Merging consecutive SCCs can be done by simply re-
moving elements from roots (lines 18 and 21). Also, it possible to decide whether
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Algorithm 3: Dijkstra’s Algorithm.

1 live: hstack of 〈Q 〉
2 dead : store of 〈Q 〉
3 roots: rstack of 〈 root : int, acc: 2F 〉

4 GET STATUS(q ∈ Q) → Status
5 if live.get(q) 6= -1
6 return LIVE

7 else if dead .has(q)
8 return DEAD

9 else
10 return UNKNOWN

11 PUSH(q ∈ Q) → Position
12 Position p ← live.size()
13 live.push(q)
14 roots.push trivial(dfs.size())
15 return p

16 UPDATE(acc ∈ 2F , d ∈ Q)

17 dpos ← live.get(d)
18 〈r , a 〉 ← roots.pop()
19 a ← a ∪ acc
20 while dpos < dfs[r ].pos
21 〈r , la 〉 ← roots.pop()
22 a ← a ∪ dfs[r ].acc ∪ la

23 roots.push non trivial( a ,r ,
24 dfs.size() - 1)
25 if a = F
26 report counterexample found

27 POP(s ∈ Step)
28 if dfs.size() = roots.top root()

29 // An SCC has been found.

30 roots.pop()
31 while live.size() > s.pos
32 q ← live.pop()
33 dead .add(q)

Algorithm 4: Gabow’s Algorithm.

1 uf : union find of 〈Q ∪ {DeadState} 〉
2 roots: rstack of 〈 root : int, acc: 2F 〉
3 uf .make set(DeadState)

4 GET STATUS(q ∈ Q) → Status
5 if uf .ufcontains(q)
6 if uf .same set(q , DeadState)
7 return DEAD

8 else
9 return LIVE

10 else
11 return UNKNOWN

12 PUSH(q ∈ Q) → Position
13 uf .make set(q)
14 roots.push trivial(dfs.size())
15 return q

16 UPDATE(acc ∈ 2F , d ∈ Q)

17 〈r , a 〉 ← roots.pop()
18 a ← a ∪ acc
19 while ¬uf .same set(dfs[r ].pos, d)
20 uf .unite(dfs[r ].pos, d)
21 〈r , la 〉 ← roots.pop()
22 a ← a ∪ dfs[r ].acc ∪ la

23 roots.push non trivial( a , r ,
24 dfs.size() - 1)
25 if a= F
26 report counterexample found

27 POP(s ∈ Step)
28 if dfs.size()= roots.top root()

29 // An SCC has been found.

30 roots.pop()
31 uf .unite(s.pos, DeadState)

a state is a root of an SCC during POP: when the position pointed to by the top
of the roots stack is equal to the size of dfs (line 28) it means the state that has
already been popped by the main DFS algorithm was a root.



8

1 2 3 4 5 6 7 8

States on dfs LIVE states DEAD states

Back-edge Visited transitions Not visited transitions

Before visiting back-edge

roots 1 3 4 5 7 8 position 1 3 4 5
∅ ∅ ∅ ∅ ∅ ∅ acc ∅ ∅ ∅

roots 2 4 6 8 position 2 4 8
(compressed) ∅ ∅ ∅ ∅ acc ∅ ∅

× X × X trivial? × X ×

After visiting back-edge

Fig. 1. Stack compression in action where numbers corresponds to DFS positions.

The roots stack is implemented with a structure called rstack that supports
three operations: pop(), push trivial(begin) and push non trivial(begin,end).
The latter two distinguish whether the SCC being pushed is trivial or not. They
can be implemented as a normal push(begin), but in Section 4.2 we will see how
to use these to compress the stack. Initially, any newly visited state constitutes
a trivial SCC (line 14) with respect to the explored part of the automaton;
non-trivial SCCs are only created when merging SCCs because of a back-edge
(line 24).

DEAD states are stored in a dead store as in the previous algorithm, and for
the same reason.

4.2 Compressing the roots Stack

The roots stack represents two kinds of SCCs: trivial and non-trivial. We suggest
to compress this stack by representing ranges of consecutive trivial SCCs in
a single entry. Each stack entry should have an additional Boolean indicating
whether it represents of range of trivial SCCs or a non-trivial SCC, and should
store the position of the last state seen before moving to the next entry. Figure 1
shows the effect of this compression.

In the worst case, it appears that we are simply adding one extra bit per
entry, but as we shall see in our experiments, merging consecutive trivial SCCs
is really effective.
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4.3 Emptiness checks

Dijkstra’s algorithm can be turned into a emptiness check by adding the green
dotted boxes. Each SCC is associated to a set of acceptance marks that have been
seen inside this SCC. When some SCCs are merged, their acceptance marks are
merged along with the marks of the transitions between these SCCs (line 25–26).
A counterexample can be reported as soon as this union is F .

Several authors have devised emptiness-check algorithms using this princi-
ple [1, 5, 12, 14, 10]. In this scheme, the main DFS can also be adjusted to chose
the next transition to visit among all the non-visited outgoing transitions of the
topmost SCC [1, 5, 14].

The algorithm proposed by Couvreur [4] is sometimes considered as a Dijkstra-
based algorithm [12]: it replaces the live stack by a simple hash map (save a tiny
bit of memory) and consequently has to rediscover the states that need to be
marked DEAD during POP (loosing time). Nevertheless it fit perfectly into the
generic canvas of Algorithm 1 and can easily be mixed with bitstate hashing and
state space caching by using a dead store.

5 Gabow-based Algorithms

The POP operation of previous algorithms is costly because it has to visit all the
states in top SCC to mark them as DEAD.

If we regard Dijkstra’s algorithm as partitioning of the set of states, each
(live) SCC corresponds to a class in this partition, and an additional class stores
all DEAD states. Merging SCCs maps to unions of LIVE classes in this partition,
while popping an SCCs should incur a union with the class of dead states.

This observation is the base of Gabow’s suggestion [8] to use the Union-Find
data structure [20] to discover the SCCs of a graph. In this data structure, a
union operation can be achieved in near constant-time (or even constant-time
for this particular application [9]), without enumerating all its states.

The Union-Find structure partitions the set Q′ = Q ∪ {DeadState} where
DeadState represent an extra artificial DEAD state, and offers the following
methods: make set(s ∈ Q′) creates a new class containing the state s; unite(s1 ∈
Q′, s2 ∈ Q′) makes the union between two classes given by their representatives
s1 and s2; and same set(s1 ∈ Q′, s2 ∈ Q′) checks whether two states are in the
same class.

Algorithm 4 follows the same schema as Algorithm 3, except that we have re-
placed live and dead , by the Union-Find structure uf , and that Positions stored
in dfs are now pointers to states. When the root of an SCC is popped (line 28),
its class is merged with that of the artificial DeadState (line 31). GET STATUS has
to be updated to check deadness using this DeadState as well. UPDATE is done
easily by uniting all classes representing the SCCs on the cycle.

The main difference with Dijkstra’s algorithm is therefore that the use of
unite in function POP dispenses from enumerating all states in the SCC. This
approach remains compatible with the compression of the roots stack presented
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in Sec. 4.2, and can be turned into an emptiness check in the same way as
Dijkstra (adding purple boxes).

As-is, this algorithm is neither compatible with bit-state hashing nor state-
space caching, because there is no dead store. Compatibility with these tech-
niques is possible, but tricky. We discuss it in the next Section.

6 Bit-State Hashing&State-Space Caching Compatibility

Bit-state hashing [15] and state-space caching [13] are two techniques to save
memory. In bit-state hashing, collisions in the hash table storing dead states
are ignored, turning the algorithm into a semi-decision procedure. In state-space
caching, dead state can be removed from the store at any moment, causing the
algorithm to possibly revisit a state several times.

On Tarjan-based and Dijkstra-based algorithms, these techniques can be im-
plemented by replacing the has and add methods of the dead store, implemented
as a hash table. Note that for bit-state hashing, it is important to check the
membership to live before the membership to dead in GET STATUS.

When compatibility with these techniques is not required, we can forgot the
use of this extra hash table, and actually store LIVE and DEAD states in the
same table, using a extra bit to distinguish LIVE from DEAD. This saves a table
lookup in GET STATUS.

For Gabow’s algorithm, compatibility with bit-state hashing and state-space
caching is more tricky to achieve and we only give the intuition. First, the Union-
Find data structure, which stores states in a vector, has to be made aware of
what a DEAD state is: let us assume that the unite of line 31 is changed to
make dead. The first time make dead is called, the states to be marked as DEAD
are all at the end of the vector. The trick is to remember the frontier between
LIVE and DEAD states in that vector. Then, every time a new singleton class
is created with the make set operation, we can reuse the slot of the first DEAD
state (right after the frontier), and move that DEAD state to the DEAD store.
GET STATUS has to be updated as well.

Note that in this approach, the set of DEAD states is distributed in two
structures: the end of the Union-Find vector, and the DEAD store, but only this
store can be subject to bit-state hashing or state-space caching. However this
approach still avoids the enumeration of states to mark them DEAD.

7 Implementation Issues and Benchmarks

All these approaches have been implemented in Spot [7]. The Union-Find struc-
ture of Gabow’s algorithm uses common optimizations: “Immediate Parent Com-
pression”, “Link by Rank”, “Path Compression”, and “Memory Smart” [17].

When dead does not use bit-state hashing nor state-space caching techniques,
an optimization consists in marking states as DEAD inside the live structure
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Fig. 2. Overhead of the emptiness checks over the SCC computations on 448 empty
products. A total of 2.5×109 states, 17.3×109 transitions, and 109 SCCs were visited.

rather than transferring it into dead during a POP. This optimization only re-
quires a special value to tag a state DEAD. Its use is denoted by -ds in tables,
while the use of a dedicated dead store (as presented previously) is denoted
by +ds. Similarly, +cs and -cs indicate whether the roots stack optimization
(Sec. 4.2) is enabled or disabled.

The models we use come from the BEEM benchmark [18]. We generate the
corresponding system automata using a version of DiVinE 2.4 patched by the
LTSmin team.5 Because there are too few LTL formulas supplied by the BEEM
benchmark, we opted to generate random formulas for each model. We computed
a total number of 860 formulas.6

A formula and a model generate a product that may be either empty (the
formula is verified) or non-empty (a counterexample exists). To decide that a
product is empty, any emptiness check has to explore all the reachable states
of the product. Conversely, a non-empty product can be reported as soon as an
accepting SCC is detected, avoiding the need to explore the entire product. In
our implementation, all algorithms use the same generic DFS traversal and thus
visit transitions in the same order.

Among our formulas, 412 result in non-empty product with the model. The
remaining 448 formulas, associated to empty products, were selected so that the
emptiness check algorithms would take at least 10 seconds on an Intel(R) 64-bit
Xeon(R) @2.00GHz with 64GB of RAM.

5 http://fmt.cs.utwente.nl/tools/ltsmin/#divine
6 For a detailed description of our setup, including selected models and formulas, see
http://move.lip6.fr/~Etienne.Renault/benchs/LPAR-2013/results_scc.html.

http://fmt.cs.utwente.nl/tools/ltsmin/#divine
http://move.lip6.fr/~Etienne.Renault/benchs/LPAR-2013/results_scc.html
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Figure 2 shows the execution time of all the emptiness check variants pre-
sented in this paper (with or without dead store, with or without compressed
roots stack). To measure the overhead of the emptiness check over the SCC
computation, we only focus on empty products.

For each bar the lower part represents the SCC computation time while the
upper part corresponds to the overhead induced by the emptiness check. The
total execution time is indicated atop the bar. The 5 rightmost bars show the
emptiness check with a dead store enabled (+ds) while the 5 leftmost bars have
it disabled (-ds).

For the same +ds/-ds setting, all execution times are very close, and the
emptiness check overhead is 3% on the average.

When the dead store is disabled, Tarjan is slightly better than Dijkstra,
which is itself slightly better than Gabow. Activating the dead store generate an
overhead of about 15%, and is more favorable to Gabow. This latter point is due
to the fact that our handling of the dead store for Gabow’s algorithm, described
in Section 6, will transfer less states from live to dead ; this reduces the overhead
to 10% only.

Table 1 reports the memory consumption, based on the size of the data
structures used. As for time measurement, these experiments only focuses on
verified formulas. The second column gives the formula that computes memory
consumption at any time. The third column shows the peak we observed while
running our experiments.

From that figure it appears that Dijkstra is the most memory efficient al-
gorithm. Indeed the stack used by Dijkstra is a subset of the dfs stack while
the dstack of Tarjan, storing a lowlink and an acceptance set for each element,
follows the variations of dfs. Gabow’s algorithm requires more memory than the
two others since it has to maintain the whole structure of the Union-Find. The
use of a dead store significantly reduces memory consumption (up to 17%).

When bit-state hashing or state-space caching are used, the size of |dead | can
be fixed arbitrarily, allowing an even greater reduction.

Table 2 reports the the cumulated number of transitions, states and SCC
visited by each algorithm for the 412-non empty products. We use this table to
compare how quickly each algorithm reports a counterexample.

Gabow’s and Dijkstra’s algorithms have identical results since they both re-
port a counterexample when a cycle is closed during UPDATE, while Tarjan’s
algorithm may delay the report of a counterexample to a later POP and visit sev-
eral states until then. Nonetheless this difference is very small in our experiment:
less than 1% additional states, transitions or SCCs have been visited. This neg-
ligible difference justifies our decision not to store an additional acceptance set
in each element of live to report counterexamples earlier in Tarjan’s algorithm,
as discussed at the end of Sec. 3.2.

Table 3 presents the impact of the lazy transfer into dead proposed for
Gabow’s algorithm. We observe that only half the states are transferred to dead ;
this means that the remaining states have been preserved in the DEAD part of
the Union-Find structure. This explains the gain observed from Fig. 2.
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Table 1. Comparison of memory consumption for emptiness check algorithms on the
448 empty products. |roots| (resp. |uf |, |dstack |, |dead |) denotes the number of elements
in rstack (resp. uf , dstack , dead). As rstack elements are pairs (root , acc), we count the
memory consumption as 2|roots| words. The additional bit required for each element of
the compressed stack is not accounted for. Since live is constructed using an hashmap
and a stack , we distinguish these sizes with |livestack | and |livehash |: they differ when
no dead store is used.

Algorithm Memory consumption (words) Observed peak

Dijkstra-cs-ds
2|roots|+ |livestack |+ 2|livehash |

6 225 414 223

Dijkstra+cs-ds 6 225 411 039

Gabow-cs-ds
2|roots|+ 3|uf | 7 364 856 119

Gabow+cs-ds 7 364 854 033

Tarjan-ds 2|dstack |+ |livestack |+ 2|livehash | 6 325 991 684

Dijkstra-cs+ds
2|roots|+ |livestack |+ 2|livehash |+ |dead |

5 160 440 344

Dijkstra+cs+ds 5 160 435 523

Gabow-cs+ds
2|roots|+ 4|uf |+ |dead| 6 608 486 024

Gabow+cs+ds 6 608 482 885

Tarjan+ds 2|dstack |+ |livestack |+ 2|livehash |+ |dead | 5 265 484 149

Table 2. Cumulated States, transitions, and SCCs visited by each emptiness check on
the 412 non-empty products.

Transitions States SCCs

Tarjan 534 471 068 67 230 381 34 622 772
Dijkstra/Gabow 534 338 119 67 187 854 34 582 459

Table 3. Impact of the dead strategy of Gabow’s algorithm on the 448 empty products.

Max. Cumulated
dead peak dead peak

Tarjan/Dijkstra (+ds) 29 098 013 2 454 950 318
Gabow (+ds) 21 430 297 1 070 440 670

Table 4. Impact of the compressed roots stack on the 448 empty products.

Max. Cumulated
roots peak roots peak

Dijkstra/Gabow (-cs) 456 98322
Dijkstra/Gabow (+cs) 119 8188

This observation also suggests that a similar optimization could be applied
to Tarjan’s and Dijkstra’s algorithms: each time the live stack is reduced, the
residual space (the free list) can be reused to store DEAD states temporarily.
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Table 4 shows the impacts of the compression technique proposed in Sec. 4.2.
It allows a tenfold memory reduction without run-time overhead according to
Fig. 2. Note that such a compression technique is independent of the emptiness
check layer, but may apply to Dijkstra’s and Gabow’s SCC computations.

In Sec. 5, we suggested that using Union-Find was an efficient way to mark
all states of an SCC as DEAD in a single operation. Unfortunately, Fig. 2 re-
veals that these gains are offset by the inherent cost of maintaining the Union-
Find structure. Our implementation of the Union-Find uses classical optimiza-
tions [17] but we have yet to investiguate wether performances could be improved
by the use of a data structure dedicated to the case where each union only con-
cern the last SCCs [9].

8 Conclusion

This paper proposed an overview of existing SCC enumeration algorithms and
proposed a generic canvas to transform them into emptiness checks for TGBA.

This lead us to define two new emptiness checks. One is based on Tarjan;
it differs from [11] in that it is more memory efficient and generalized. Another
one is based on Gabow’s suggestion to use the Union-Find data structure: our
results with that data structure are mixed, but as far as we know, this is the
first time this data structure is used for emptiness check.

We also introduced a couple of optimizations. For Dijkstra’s and Gabow’s
emptiness checks we suggest to compress the roots stack to save some memory.
Additionally, we discussed a strategy to transfer DEAD state from the Union-
Find structure to the dead store lazily, resulting in an important gain of time,
and this strategy could also be applied to the other algorithms.

We have several leads for future work. One would be to devise a compression
technique for the stack of lowlink (dstack) used by Tarjan’s algorithm to make
it more competitive to Dijkstra’s algorithm (currently more memory-efficient).
Furthermore, the compaction of the live stack suggested by Nuutila and Soisalon-
Soininen [16] for Tarjan’s algorithm could be adapted to Dijkstra’s algorithm and
(with a more work) to Gabow’s. Another idea would be to study the various
ways to extract counterexamples from these algorithms; the procedure suggested
by Couvreur et al. [5] would work for Dijkstra and Gabow but should not be
difficult to adapt to Tarjan. Finally, we would like to investigate the possibility to
parallelize these emptiness checks. There are very few parallel emptiness checks
based on SCC computations [2], however as Tarjan and Dijkstra use different
data structure than Gabow, may be one of them will be more favorable to a
parallel setup.
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