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Improving Swarming Using Genetic Algorithms

Etienne Renault

Abstract The verification of temporal properties aga-

inst a given system may require the exploration of its

full state space. In explicit model-checking this explo-

ration uses a Depth-First-Search (DFS) and can be

achieved with multiple randomized threads to increase

performance.

Nonetheless the topology of the state-space and

the exploration order can cap the speedup up to a

certain number of threads. This paper proposes a new

technique that aims to tackle this limitation by gener-

ating artificial initial states, using genetic algorithms.

Threads are then launched from these states and thus

explore different parts of the state space.

Our prototype implementation is 10% faster than

state-of-the-art algorithms on a general benchmark

and 40% on a specialized benchmark. Even if we ex-

pected a decrease of an order of magitude, these re-

sults are still encouraging since they suggest a new

way to handle existing limitations. Empirically, our

technique seems well suited for ”linear” topology, i.e.

the one we can obtain when combining model-cheking

algorithms with partial order reductions techniques.

1 Introduction and Related Work

Model checking [10] aims to check whether a system

satisfies a property. Given a model of the system and a

property, it explores all the possible configurations of

the system, i.e., the state space, to check the validity

of the property. Typically two kinds of properties are

distinguished, safety and liveness properties [25]. This

paper mainly focuses on safety properties that are of

special interest since they stipulate that some “bad

thing” does not happen during execution. Nonethe-
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less the adaptation of this work for checking liveness

properties is detailed in Section 5.1.4.

The state-space exploration techniques for debug-

ging and proving correctness of concurrent reactive

systems have proven their efficiency during the last

decades [20, 27, 33, 5]. Nonetheless they suffer from

the well known state space explosion problem, i.e., the

state space can be far too large to be stored and thus

explored in a reasonable time. This problem can be

addressed using symbolic [9] or explicit [38] techniques

even if we only consider the latter one in this paper.

Many improvements have been proposed for ex-

plicit techniques. On-the-fly exploration [11] computes

the successors of a state only when required by the al-

gorithm. As a consequence, if the property does not

hold, only a subset of the state space is constructed.

Partial Order Reductions (POR) [35, 30, 24] avoid the

systematic exploration of the state space by exploit-

ing the interleaving semantic of concurrent systems.

State Space Caching [16] saves memory by “forget-

ting” states that have already been visited causing the

exploration to possibly revisit a state several times.

Bit-state Hashing [18] is a semi-decision procedure in

which each state is associated to a hash value. When

two states share the same hash value, one of this two

states (and thus its successors) will be ignored.

These techniques focus on reducing the memory

footprint during the state-space exploration. Combin-

ing these techniques with modern computer architec-

tures, i.e., many-core CPUs and large RAM memories,

tends to shift from a memory problem to an execution

time problem which is: How this exploration can be

achieved in a reasonable time?

To address this issue multi-threaded (as well as

distributed) exploration algorithms (that can be com-

bined with previous techniques) have been developed

[19, 4, 14, 27]. Most of these techniques rely on the
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swarming technique presented by Holzmann et al. [20].

In this approach, each thread runs an instance of a

verification procedure but explores the state space

with its own transition order.

Nowadays, best performance is obtained when com-

bining swarming with DFS -based (Depth-First Search)

verification1 procedures [33, 5]. In these combinations,

threads share information about states that have been

fully explored, i.e. states where all successors have been

visited by a thread. Such states are called closed states.

These states are then avoided by other threads explo-

rations since they can not participate in invalidating

the property. These swarmed-DFS algorithms are lin-

ear but their scalability depends on two factors:

Topology problems. If the state space is linear (only

one initial state, one successor per state), using

more than one thread cannot achieve any speedup.

This issue can be generalized to any state space

that is deep but not wide.

Exploration order problems. States are tagged as

closed following the DFS postorder of a thread.

Thus, a state s can only be marked as closed after

visiting at least N states, where N is the minimal

distance between the initial state and s.

Table 1 highlights this scalability problem over the

benchmark2 used in this paper. It presents the cumu-

lated exploration time (in a swarmed DFS fashion)

for 38 models extracted from the literature. It can

be observed that this algorithm achieves reasonable

speedup up to 4 threads but is disappointing for 8

threads and 12 threads (the maximum we can test).

This paper proposes a novel technique that aims to

keep improving the speedup as the number of threads

increases and which is compatible with all memory

reduction methods presented so far.

The basic idea is to use genetic algorithms to gen-

erate artificial initial states (Sections 2 and 3). Threads

are then launched with their own verification proce-

dure from these artificial states (Sections 4 and 5).

We expect that these threads will explore parts of

the state space that are relatively deep regarding to

(many) DFS order(s). Thus, some states are tagged

as closed without processing some path between the

original initial state to these states.

Our prototype implementation (Section 6) has en-

couraging performances: the proposed approach runs

1 It should be noted that even if DFS-based algorithms
are hard to parallelize [31] they scale better in practice than
parallelized Breadth-First Search (BFS) algorithms.
2 See Section 6 for more details about the benchmark.

10% faster (with 12 threads) than state-of-the-art al-

gorithms (with 12 threads). These results, even if they

do not provide the expected gain of an order of mag-

nitude, show that this novel approach is worth to be

considered as a way to overcome existing limitations.

This paper is an extension of our work published

at VECOS’18 [32] where we proposed new parallel ex-

ploration algorithms built upon the generation of arti-

ficial initial states using genetic programming. These

artificial states were then used on-the-fly to generate

new seeds for the various threads used during the ex-

ploration. In this approach half of the threads were

spawned from artificial states while the others used

the classical approach used in model-checking algo-

rithms. To handle the verification of safety properties,

this approach was adapted to avoid (1) early termi-

nation and (2) reporting false positive.

In addition to the above (common with our pre-

vious paper [32]), we investigate one variant: the num-

ber of threads using artificial states may have an im-

pact on the performances of our algorithms (more de-

tails in Section 6). This section now integrates a full

comparison with state-of-the-art algorithms as well

as an evaluation for models with a linear topology.

We also detail the full proof for Algorithm 6 in Sec-

tion 5.1.3 (while only its sketch was given in the VE-

COS’18 version[32]). Section 5.1.2 provides a detailed

example of our algorithm while Section 5.1.4 focuses

on reporting counterexamples from our algorithms.

Finally, the Section 5.2 details how our algorithms

can be combined with classical algorithms for check-

ing liveness properties.

Related Work. To our knowledge, the combination

of parallel state space exploration algorithms with the

generation of artificial initial states using genetic al-

gorithms has never been done. The closest work is

probably the one of Godefroid and Khurshid [15] that

suggests to use genetic programming as an heuris-

tic to help random walks to select the best successor

to explore. The generation of other initial states has

been proposed to maximize the coverage of random

walks [34]: to achieve this, a bounded BFS is per-

formed to obtain a pool of states that can be used

as seed states. This approach does not help the scala-

bility when the average number of successors is quite

low (typically when mixing with POR).

In the literature there are some works that com-

bine model checking with genetic programming but

they are not related to the work presented here: Katz

and Peled [22] use it to synthesize parametric pro-

grams, while all the other approaches are based on

the work of Ammann et al. [1] and focus on the au-
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1 thread 2 threads 4 threads 8 threads 12 threads

Time in milliseconds 2 960 296 1 796 418 118 6344 981 222 978 711

Speedup 1 1.65 2.50 3.016 3.025

Table 1 Problem statement about swarmed DFS like approaches.

tomatic generation of mutants that can be seen as

particular “tests cases”.

2 Parallel State Space Exploration

Preliminaries. Concurrent reactive systems can be

represented using Transitions Systems (TS). Such a

system T = 〈Q, ι, δ, V, γ〉 is composed of a finite set of

states Q, an initial state ι ∈ Q, a transition relation

δ ⊆ Q × Q, a finite set of integer variables V and

γ : Q → N|V | a function that associates with each

state a unique assignment of all variables in V . For

a state s ∈ Q, we denote by post(s) = {d ∈ Q |
(s, d) ∈ δ} the set of its direct successors. A path of

length n ≥ 1 between two states q, q′ ∈ Q is a finite

sequence of transitions ρ = (s1, d1) . . . (sn, dn) with

s1 = q, dn = q′, and ∀i ∈ {1, . . . , n − 1}, di = si+1.

A state q is reachable if there exists a path from the

initial state ι to q.

Swarming. Checking temporal properties involves the

exploration of (all or some part of) the state space of

the system. Nowadays, best performance is obtained

by combining on-the-fly exploration with parallel DFS

reachability algorithms [33, 5], such as Algorithm 1.

This algorithm is presented recursively for the sake
of clarity. Lines 4 and 5 represent the main procedure:

ParDFS takes two parameters, the transition system

and the number n of threads to use for the explo-

ration. Line 5 only launches n instances of the proce-

dure DFS. This last procedure takes three parameters,

s the state to process, tid the current thread number

and a color used to tag new visited states. Procedure

DFS represents the core of the exploration. This ex-

ploration relies on a shared hashmap visited (defined

line 2)3 that stores all states discovered so far by all

threads and associates each state with a color (line 1):

– open indicates that the state (or some of its suc-

cessors) is currently processed by (at least) a thread,

– closed indicates that the state and all its suc-

cessors (direct or not) have been visited by some

thread.

The DFS function starts (lines 7 to 8) by checking

if the parameter s has already been inserted, by this

3 Notice that we use the C++ convention where
visited.get(s) is written visited[s].

Algorithm 1: Parallel DFS Exploration.

1 enum color = { open, closed }
2 visited: hashmap of (Q, color) // Shared variable

3 stop← ⊥ // Shared variable

4 Procedure ParDFS(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, n,open)

6 Procedure DFS(s ∈ Q, tid : Integer, status : color)
7 if s 6∈ visited then visited.add(s, status)
8 else if visited[s] = closed then return
9 // Shuffle successors using tid as seed

10 todo ← shuffle(post(s), tid)
11 while (¬stop ∧ ¬todo.isempty()) do
12 s′ ← todo.pick()
13 if s′ is in the current recursive DFS stack then

continue

14 if (s′ 6∈ visited) ∨ visited[s′] 6= closed) then
15 DFS(s′, tid, status)

16 visited[s]← closed

17 if (s = ι) then stop← >

thread or another one, in the visited map (line 7). If

not, the state is inserted with the color open (line 7).

Otherwise, if s has already been inserted we have to

check whether this state has been tagged closed. In

this case, s and all its successors have been visited:

there is no need to revisit them. Line 10 grabs all the

successors of the state s that are then shuffled to im-

plement the swarming. Finally lines 11 to 15 perform

the recursive DFS: for each successor s′ of the current

state, if s′ has not been tagged closed a recursive call

is launched. When all successors have been visited, s

can be marked closed.

One can note that a shared Boolean stop is used

in order to stop all threads as soon as a thread closes

the initial state. This Boolean is useless for this algo-

rithm since, when the first thread ends, all reachable

states are tagged closed and every thread is forced

to backtrack. Nonetheless this Boolean will be use-

ful later (see Section 4). Moreover the visited map is

thread safe (and lock-free) so that it does not degrade

performances of the algorithm (see [23, 3] for details

about the implementation of parallel hash tables).

Problem statement. The previous algorithm (or some

adaptations of it [33, 5]) obtains the best performance

for explicit model checking. Nonetheless this swarmed

algorithm suffers from a scalability problem. Figure 1

describes a case where augmenting the number of threads
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will not bring any speedup4. This figure describes a

transition system that is linear. The dotted transitions

represent long paths of transitions. In this example,

state x cannot be tagged closed before state y and all

the states between x and y have been tagged closed.

The problem here is that all threads start from state

s. Since threads have similar throughput they will dis-

cover x and y approximately at the same time. Thus

they cannot benefit from the information computed

by the other threads. This example is pathological but

can be generalized to any state space that is deep and

narrow.

s

x

y

Fig. 1 Using
more than one
thread for the
exploration is
useless.

Suppose now that there are 2

threads and that the distance be-

tween s and x is the same as the

distance between x and y. The

only way to obtain the maximum

speedup is to launch one thread

with a DFS starting from s and

launch the other thread from x.

In this case, when the first thread

reaches state x, x has just been

tagged closed: the first thread

can backtrack and stop.

A similiar problem arises

when performing on-the-fly model checking since (1)

there is only one initial state and (2) all states are

generated during the exploration. Thus a thread can-

not be launched from a particular state. Moreover,

the system’s topology is only known after the explo-

ration: we need a technique that works for any kind

of topology.

The idea developed in this paper is the automatic

generation of state x using genetic algorithms. The

generation of the perfect state (the state x in the ex-

ample) is a utopia. Nonetheless if we can generate a

state relatively deep regarding to many DFS orders,

we hope to avoid redundant work between threads,

and thus maximize the information shared between

threads. In practice we may generate states that do

not belong to the state space, but Section 6 shows

that more than 84% of generated states belongs to it.

3 Generation of Artificial Initial State

Genetic algorithms. For many applications the com-

putation of an optimal solution is impossible since the

set of all possible solutions is too large to be explored.

To address this problem, Holland [17] proposed a new

kind of algorithms (now called genetic algorithms)

4 This particular case will certainly degrade performance
due to contention over the shared hashmap.

a b
00101010 00110011

Fig. 2 Chromosome representation.

that are inspired by the process of natural selection.

These algorithms are often considered as optimizers

and used to generate high-quality solutions to search

problems. Basically, genetic algorithms start by a pop-

ulation of candidate solutions and improve it using

bio-inspired operators:

- Crossover : selects multiple elements in the popu-

lation (the parents) and produces a child solution

from them.

- Mutation: selects one element in the population

and alters it slightly.

Applying and combining these operators produces

a new generation that can be evaluated using a fit-

ness function. This fitness function allows to select

the best elements (w.r.t the considered problem) of

this new population. These best elements constitute

a new population on which mutation and crossover

operations can be re-applied. This process is repeated

until some satisfying solution is found (or until a max-

imal number of generations has been reached).

Genetic algorithms rely on a representation of so-

lutions that is chromosome-like. In the definition of a

transition system we observe that every state can be

seen as a tuple of integer variables using the γ func-

tion. Each variable can be considered as a gene and

the set of variables can be considered as a chromosome

composed of 0 and 1. For instance, if a state is com-

posed of two variables a = 42 and b = 51 the resulting

chromosome (considering 8 bits integers) would be the

one described in Figure 2.

Crossover. Concurrent reactive systems are gener-

ally composed of a set of Np processes and a set of

shared variables (or channels). Given a transition sys-

tem T = 〈Q, ι, δ, V, γ〉 we can define E : V → [0, Np[,

such that if v is a shared variable, E(v) returns 0 and

otherwise E(v) returns the identifier of the process

where the variable v is defined.

Algorithm 2 defines the crossover operation we

use. This algorithm takes a parameter S which repre-

sents the population to use for generating a new state.

Line 2 instantiates a new state s that will hold the re-

sult of the crossover operation. Lines 3 to 5 set up the

values of the shared variables of s: for each shared vari-

able v, an element of S is randomly selected to be the

parent. Then, at line 5, one can observe that γ(s)[v]

(the value of v in s) is set according to γ(parent)[v]
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Process 1
a b

parent1 00000000 00000000
parent2 11111111 11111111

Crossover(S) 00000000 11111111

Fig. 3 Possible Crossover.

(the value of v in the parent). Lines 6 to 9 perform a

similar operation on all the remaining variables.

These variables are treated by batch, i.e., all the

variables that belong to a same process are filled us-

ing only one parent (line 7). This choice implies that

in our Crossover algorithm the local variable of a

process cannot have two different parents: this par-

ticular processing helps to exploit the concurrency

of underlying system. A possible result of this algo-

rithm is represented in Figure 3 (with 8 bits inte-

ger variables, only one process, no shared variables,

S = {parent1, parent2} and child the state computed

by Crossover(S)).

Algorithm 2: Crossover.

1 Procedure Crossover(S ⊆ Q)
2 s← newState()
3 for v ∈ V s.t. E(v) = 0 do
4 parent← pick random one of S

5 γ(s)[v]← γ(parent)[v]
6 for i ∈ [0, Np[ do
7 parent← pick random one of S
8 for v ∈ V s.t. E(v) = i do
9 γ(s)[v]← γ(parent)[v]

10 return s

Algorithm 3: Mutation.

1 Procedure Mutation(s ∈ Q)
2 for v ∈ V do

3 r ← random(0..1)
4 if r > threshold then
5 γ(s)[v] = random flip one bit in(γ(s)[v])
6 γ(s)[v] = bound project(γ(s)[v])

Mutations. The other bio-inspired operator simu-

lates alterations that could happen while genes are

combined over multiple generations. In genetic algo-

rithms, these mutations are performed by switching

the value of a bit inside of a gene. Here, all the vari-

ables of the system are considered as genes.

Algorithm 3 describes this mutation. For each vari-

able in the state s (line 2), a random number is gener-

ated. A mutation is then performed only if this num-

ber is above a fixed threshold (line 4): this restriction

Process 1
a b

s 00000100 00001000
Mutation(s) 00000101 00001000

Fig. 4 Possible Mutation.

limits the number of mutations that can occur in a

chromosome. We can then select randomly a bit in the

current variable v and flip it (line 5). Finally, line 6 ex-

ploits the information we may have about the system

by restricting the mutated variable to its bounds.

Indeed, even if all variables are considered as inte-

ger variables there are many cases where the bounds

are known a priori: for instance Boolean, enumeration

types, characters, and so on are represented as integers

but the set of values they can take is relatively small

regarding the possible values of an integer. A possi-

ble result of this algorithm is represented in Figure 4

(with 8 bits integer variables and only two character

variables, i.e., that have values between [0..255]).

Fitness. As mentioned earlier, every new population

must be restricted to the only elements that help to

obtain a better solution. Here we want to generate

states that are (1) reachable and (2) deep with respect

to many DFS orders. These criteria help the swarming

technique by exploring parts of the state space before

another thread (starting from the real initial state)

reaches them.

We face here a problem that is: for a given state

it is hard to decide whether it is a good candidate

without exploring all reachable states. For checking

deadlocks (i.e., states without successors) Godefroid

and Khurshid [15] proposed a fitness function that will

only retain states with few transitions enabled5.

Since we have different objectives a new fitness

function must be defined. In order to maximize the

chances to generate a reachable state, we compute the

average outgoing transitions (Tavg) of all the states

that belong to the initial population. Then the fitness

function uses this value as a threshold to detect good

states. Many fitness function can be considered:

– equality: the number of successors of a good state

is exactly equal to Tavg. The motivation for this

fitness function is that if there are Np > 1 inde-

pendent processes that are deterministic then at

every time, any process can progress. In this strat-

egy, we consider that a good state has exactly Np

(equal to Tavg) outgoing transitions.

5 Godefroid and Khurshid [15] do not generate states but
finite paths and their fitness functions analyzes the whole
paths to keep only those with few enabled transitions.
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– lessthan: the number of successors of a good state

is less than Tavg. The motivation for this fitness

function is that if there are Np > 1 independent

deterministic processes that communicate then at

any time each process can progress or two (or more)

processes can be synchronized. This latter case will

reduce the number of outgoing transitions.

– greaterthan: the number of successors of a good

state is greater than Tavg. The motivation for this

fitness function is that if there are Np > 1 indepen-

dent and non-deterministic processes then at any

time each process can perform the same amount

of actions or more.

Algorithm 4: The generation of new states.

1 Procedure Generate(S ⊆ Q)
2 for i← 0 to nb generation do
3 S′ ← ∅
4 for j ← 0 to pop size do
5 s← Crossover(S)
6 Mutation(s)
7 if Fitness(s) then S′ ← S′ ∪ {s}
8 S ← S′

9 return S

Generation of artificial state. Algorithm 4 presents

the genetic algorithm used to generate artificial initial

states using the previously defined functions.

The only parameter of this algorithm is the initial

population S we want to mutate: S is obtained by per-

forming a swarmed bounded DFS and keeping trace

of all encountered states. From the initial population

S, a new generation can be generated (lines 4 to 8).

At any time the next generation is stored in S′ (lines 7

and 3). The algorithm stops after nb generation

generations (line 2). Note that this algorithm can re-

port an empty set according to the fitness function

used.

4 State-Space Exploration with Genetic

Algorithm

This section explains how Algorithm 1 can be adapted

to exploit the generation of artificial initial states men-

tioned in the previous section. Algorithm 5 describes

this parallel state-space exploration using genetic al-

gorithm. The basic idea is to have a collaborative port-

folio approach in which threads will share informa-

tion about closed states. In this strategy, half of the

available threads runs the DFS algorithm presented in

Section 2, while the other threads perform genetic ex-

ploration. This exploration is achieved by three steps:

1. Perform swarmed bounded depth-first search ex-

ploration that stores into a set P all encountered

states (line 7). This exploration is swarmed, so that

each thread has a different initial population P.

(Our bounded -DFS differs from the literature since

it refers to DFS that stops after visiting N states.).

2. Apply Algorithm 4 on P to obtain a new popula-

tion P ′ of artificial initial states (line 8).

3. Apply the DFS algorithm for each element of P ′

(lines 9 to 11). When the population P ′ is empty,

just restart the thread with the initial state ι (see

line 12).

One can note (line 1) that the color enumeration

has been augmented with open gp. This new status

may seem useless for now but allows to distinguish

states that have been discovered by the genetic al-

gorithm from those discovered by the traditional al-

gorithm. In this algorithm open gp acts and means

exactly the same as open but: (1) this status is useful

for the sketch of termination proof below and, (2) the

next section shows how we can exploit similar infor-

mation.

Algorithm 5: Parallel DFS Exploration using Genetic
Algorithm.

1 enum color = { open, open gp, closed }
2 visited: hashmap of (Q, color)
3 stop← ⊥
4 Procedure ParDFS GP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, bn

2
c,open) || DFS GP(ι, bn

2
c+

1) || . . . || DFS GP(ι, n)

6 Procedure DFS GP(ι ∈ Q, tid : Integer)
7 P ← Bounded DFS(ι, tid) // Swarmed exploration

using tid as a seed

8 P ′ ← Generate(P) // Described Algorithm 4

9 while P ′ not empty ∧ ¬stop do
10 s← pick one of P ′

11 DFS(s, tid,open gp)
12 if ¬stop then DFS(ι, tid,open)

Termination. Until now we have avoided mentioning

one problem: there is no reason that a generated state

is a reachable state. Nonetheless even if the state is

not reachable, some of its successors (direct or not)

may be reachable. Since the number of unreachable

states is generally much larger than the number of

reachable states, we have to ensure that Algorithm 5

terminates as soon as all reachable states have been

explored.

First of all let us consider only threads running

the DFS algorithm. Since this algorithm has already
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been proven (see. [33] for more details), only the in-

tuition is given here. When all the successors of an

open state have been visited, this state is tagged as

closed. Since all closed states are ignored during

the exploration, each thread will restrict parts of the

reachable state space. At some point all the states will

be closed: even if a thread is still performing its DFS

procedure, all the successors of its current state will

be marked closed. Thus the thread will be forced to

backtrack and stop.

The problem we may have with using genetic al-

gorithm is that all the threads performing the genetic

algorithm may be running while all the other ones are

idle since all the reachable states have already been

visited. In this case, a running thread can see only

unreachable states, i.e. open gp, or closed ones. To

handle this problem, a Boolean stop is shared among

all threads (line 2). When this Boolean is set to >
all threads stop regardless the exploration technique

used (line 11, Algorithm 1). We observe line 9 that

the use of other artificial states is also stopped, and

no restart will be performed (line 12). This Boolean is

set to > only when all the successors of the real initial

state have been explored (line 17, Algorithm 1). Thus,

one can note that even if a thread using the genetic

algorithm visits first all reachable states it will stop

all the other threads.

5 Checking Temporal Properties

5.1 Checking Safety Properties

5.1.1 The deadlock detection algorithm

Safety properties cover a wide range of properties:

deadlock freedom (there is no state without succes-

sors), mutual exclusion (two processes execute some

critical section at the same time), partial correctness

(the execution satisfies a precondition but invalidates

a postcondition), etc. One interesting characteristic

of safety properties is that they can be checked us-

ing a reachability analysis (as described in Section 2).

Nonetheless, our genetic reachability algorithm (Algo-

rithm 5) cannot be directly used to check safety prop-

erties. Indeed, if a thread (using genetic programming)

reports an error we do not know if this error actually

belongs to the state space.

Algorithm 6 describes how to adapt Algorithm 5

to check safety properties. To simplify things we focus

on checking deadlock freedom, but our approach can

be generalized to any safety property. This algorithm6

6 Main differences have been highlighted to help the
reader.

relies on both Algorithms 1 and 5. The basic idea is

still to launch half of the threads from the initial state

ι and the remaining ones from some artificial initial

state (line 10).

– For a thread performing reachability with the ge-

netic algorithm the differences are quite few. When

a deadlock state is detected (line 36) we just tag

this state as deadlock gp rather than closed.

This new status is used to mark all states lead-

ing to a deadlock state. Indeed since we do not

know if the state is a reachable one we cannot re-

port immediately that a deadlock has been found.

Moreover we cannot mark this state closed oth-

erwise a counterexample could be lost. This new

status helps to solve the problem: when such a

state is detected to be reachable, a deadlock is im-

mediately reported. The other modifications are

lines 29 and 31: when backtracking, if a deadlock

has been found no more states will be explored.

– For a thread performing reachability without ge-

netic algorithm the differences are also quite few.

Lines 24 to 27 only check if the next state to pro-

cess has been marked deadlock gp. In this case

this state is a reachable one and it leads to a dead-

lock state. We can then report that a deadlock has

been found and stop all the other threads. A dead-

lock can also be reported directly (line 32), if the

current state is a deadlock.

5.1.2 Detailed example.

Algorithm 6 is depicted step by step in Figure 5. For

this example, we consider that lines 44 and 46 (com-

puting the artificial initial states) have already been

realized. Let us consider two threads: t1 performing

a classical approach and t2 performing a genetic pro-

gramming approach, i.e. n = 2, t1 has been launched

line 7, and t2 line 9. Step (1) represents the state space

(a, b, c, d, e, f) as well as some states that do not be-

long to it (g, h).

Step (2) represents t1 starting from the initial state

and exploring states a, b, c, and d. Step (3) represents

t2 starting from the artificial initial g state and explor-

ing state h. In step (4), t2 detects that all its successors

are on its recursive stack. As a consequence, the state

h will be marked closed, line 39 of Algorithm 6. The

thread t2 can then backtrack state h and continue to

explore the next successors of g, i.e. f .

Step (5) represents two concurrent actions. First,

t2 has explored states f and e. Second, t1 has detected

that all successors of d are on its recursive stack and

then d has been marked as closed. Then t1 discov-

ered that all the successors of c have been explored,
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. . . . . .
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Fig. 5 Plain circles represents reachable states while dashed ones represents non reachable ones. Two threads explore this
example, one from a and one from g (then from i). Blue states represent open states, and blue cross hatched states represent
open gp ones. Forbidden signed states represent closed states and green ones the deadlock gp ones.

so this state can also be marked closed line 39. The

same operations are then applied to b which is then

marked closed. t1 can then backtrack b and explores

the remaining successors of a.

During step (6), thread t2 discovers that state e is

effectively a deadlock (line 37). State e is then tagged

deadlock gp. When this state is backtracked (af-

ter the recursive call line 28), state f detects that its

only successor can reach a deadlock state. As a conse-

quence, state f will be immediately marked dead-

lock gp (line 30), and backtracked (line 31). For

the same reasons, state g will also be tagged dead-

lock gp, and backtracked. Notice that lines 40–41

prevent stopping all the threads when backtracking

state g.

From now, as soon as t1 will discover state f it

can report a counterexample, i.e. a deadlock has been

detected. Indeed, lines 21–27 of Algorithm 6 detect

such a situation. This situation can be described as

follows: ”a classical thread detects a state that can

lead to a deadlock but was discovered by a gp thread”.

In this case, we can claim that there exists a path from

the initial state to a deadlock. One should note that t1
reports a deadlock without seeing f and e. When the

deadlock is detected, all the other threads are stopped.

Finally step (7) depicts lines 46–48 of the algo-

rithm. Thread t2 finished its exploration from state g

and picked another artificial state (here state i).

Discussion. The observer reader may notice three

relevant informations:

1. Here, the gp thread starts two explorations, one

from g and one from i. Both of these states have

been generated and both of these states do not

belong to the state space. There is no obligation

for these states to be outside of the state space. If

they belong to the state space, the algorithm works

perfectly the same, without this information.

2. Suppose that in step (3), the algorithm choses state

f rather than state h. In this case, a deadlock

will be found, and all states are backtracked. Do-

ing that will prevent the exploration of state h.

We opted for this strategy in order to propagate

as soon as possible the information about dead-

lock detection. Nonetheless, our algorithm is eas-

ily adaptable to force the exploration of remaining

successors.

3. Our algorithm does not exploit the fact that two

gp threads cooperate. Indeed, a first thread can

detect a deadlock and backtracks. When the sec-

ond gp thread discovers a deadlock gp state it

can immediately backtrack while our current algo-

rithm forces the exploration until the deadlock is

re-discovered. Experiments (not presented in this

paper) show that this optimization bring no ben-

efits in practice.

5.1.3 Proof of the algorithm

This subsection details the proof that Algorithm 6 will

report a deadlock if and only if there exists a reachable

state that has no successors. To prove this algorithm,

two theorems must be verified:
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Algorithm 6: Parallel Deadlock Detection Using Ge-
netic Algorithm.

1 enum color =
2 { open, open gp, closed , deadlock gp }
3 visited: hashmap of (Q, color)
4 stop← ⊥
5 deadlock ← ⊥
6 Procedure

ParDeadlockGP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)

7 DeadlockDFS(ι, 1,open) || . . . ||
8 DeadlockDFS(ι, bn

2
c,open) ||

9 DeadlockDFS GP(ι, bn
2
c+ 1) || . . . ||

10 DeadlockDFS GP(ι, n)

11 Procedure

DeadlockDFS(s ∈ Q, tid : Integer, status : color)
12 if s 6∈ visited then

13 visited.add(s, status)
14 else if visited[s] = closed then
15 return

16 todo ← shuffle(post(s), tid)

17 while (¬stop ∧ ¬todo.isempty()) do

18 s′ ← todo.pick()
19 if s′ is in the current recursive DFS stack then
20 continue

21 if (s′ 6∈ visited ∨ visited[s′] 6= closed) then

22 b← (s′ ∈ visited ∧ visited[s′] = deadlock gp

23 ∧ status = open)

24 if b then

25 deadlock ← >
26 stop← >
27 break

28 DeadlockDFS(s′, tid, status)

29 if visited[s′] = deadlock gp ∧ status = open gp
then

30 visited[s]← deadlock gp

31 return

32 if post(s) = ∅ ∧ status = open then

33 deadlock ← >
34 stop← >
35 return

36 if post(s) = ∅ ∧ status = open gp then

37 visited[s]← deadlock gp

38 else
39 v[s]← closed

40 if (s = ι) then
41 stop← >

42 Procedure DeadlockDFS GP(ι ∈ Q, tid : Integer)
43 // Also check deadlock during this DFS

44 P ← Bounded DFS(ι, tid)
45 P ′ ← Generate(P)
46 while P ′ not empty ∧ ¬stop do
47 s← pick one of P ′

48 DeadlockDFS(s, tid,open gp)
49 if ¬stop then

50 DeadlockDFS(ι, tid,open)

Theorem 1. For all systems S, the algorithm termi-

nates.

Theorem 2. A thread reports a deadlock iff ∃s ∈ Q,
post(s) = ∅.
To simplify this proof, we denote by classical thread

a thread that does not perform genetic algorithm while

the other threads are called gp threads. The following

invariants hold for all lines of Algorithm 6:

Invariant 1. If stop is > then no new state will be

discovered.

Proof. New states are computed line 16 but only

discovered one-by-one line 18. Let us suppose that

some thread sets the stop variable to > (lines 26,

34, or 40): this thread will quit the while loop line

17. Exiting the DeadlockDFS function will also

exit the loop line 45 and exit this thread. For the

other threads two situations may occur. First, the

threads are backtracking from the call line 28: the

next iteration will not be executed, and the threads

will exit without discovering new states. If the threads

are executing lines 18–27, then the call line 28 will

be performed but the check line 17 will avoid new

states to be discovered.

Invariant 2. A deadlock state can only be open,

open gp or deadlock gp.

Proof. From line 7–10, 47 and 49, the only sta-

tuses that can be used line 12–13 are open and

open gp. If a state has no successor, the condi-

tion in the loop (line 17) will not be satisfied and

the thread jumps line 32. If the thread is using the

classical approach, lines 32–34 are executed and a

deadlock is reported (stopping the other threads).

Otherwise, the state is only marked deadlock gp

line 37.

Invariant 3. No direct successor of a closed state

is a deadlock state.

Proof. A state s is marked as closed line 39

when all its successors have been visited lines 17

– 31. Lines 19 and 21 ensure that a recursive call

is performed only on states that are (1) open or

not in the DFS stack. All the other direct succes-

sors are then explored and backtracked, and then

marked closed before s is marked closed.

Invariant 4. A state is marked closed iff all its suc-

cessors that are not on the thread’s recursive stack

are closed.

Proof. From Invariant 3, we know that all the di-

rect successors of a state are either on the DFS

stack or closed. Since states are marked closed

in the DFS postorder line 39, all its successors that

are not on the recursive stack are backtracked and

then marked closed.
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Invariant 5. Only gp threads can tag a state dead-

lock gp.

Proof. Trivial. From the algorithm, the only places

where the status is changed to deadlock gp are

lines 30 and 37. For both, the previous line checks

wheter the status is open gp. From line 9,10 and

48 only gp threads can have this status. One should

note that line 50, the gp thread becomes a classical

thread.

Invariant 6. A state is deadlock gp iff it is a dead-

lock state or if one of its successors (direct or not)

is a deadlock state.

Proof. If a state is trivially a deadlock state, line

37 will mark it deadlock gp and return (line

35). Consequently, all its predecessors will be marked

deadlock gp during the backtrack (line 30). Thus,

a state can only be tagged deadlock gp iff one

of its successors is a real deadlock.

Invariant 7. Only classical thread can report that a

deadlock has been found.

Proof. A deadlock can be reported lines 25–26 or

lines 33–34. Lines 33–34 can only be executed by

a classical thread due to the condition line 32 (and

the note of invariant 5). Lines 25–26 can also re-

port that state s is a deadlock but the condition

(status = open) ensures that only a classical thread

will report it. In this case a gp thread has discov-

ered that some (possibly indirect) successor of s

is a deadlock, without knowing that s is reachable

from the initial state. The lines 25–26 detect that

this state is reachable and can then report the dead-

lock.

Invariant 8. If a state is reachable then all its direct

successors are reachable.

Proof. By construction, ι is the initial state then

reachable. All threads starting from ι lines 7,8 and

50 will then start from a reachable state. Apply-

ing the transition relation line 16 will then only

produce reachable states.

Proof of Theorem 1. From invariant 8, and since

the system has a finite number of states, at least one

thread will perform the exploration from the initial

state ι. If no deadlock is found, the thread will back-

track and finally reach lines 40–41. The stop boolean

will then be set to >. From invariant 1. the algo-

rithm stops. Reaching closed states (line 14) will

only prune the exploration and then have no impact

on the termination for classical threads. Gp threads

may only explore states that are not part of the state

space. Nonetheless, invariant 1 ensures the termina-

tion for these threads when some thread will mark stop

as >. If a deadlock is discovered by a classical thread,

invariant 1 and 4 will ensure the termination of all

threads. If a gp thread detects it, invariant 7 combined

to invariant 8 will force all threads to stop using lines

26 and 34.

Proof of Theorem 2. From invariant 2 we know that

a deadlock state can never be marked closed because

(1) if discovered by a classical thread a deadlock is

immediately reported, and (2) because otherwise this

information must be propagated. Invariant 3, 5 and

6 ensure that the information is correctly propagated,

while invariant 7 ensures that no gp thread can report

that a deadlock has been found. The other direction of

theorem 2 is quite evident. If a deadlock exists, then

it is a reachable state. Since all reachable states are

explored by classical thread, the report will be done

(see invariant 7)

5.1.4 Reporting a counterexample

In Algorithm 6, a classical thread can report the ex-

istence of a deadlock but cannot necessarily report

the counterexample forming it. Indeed, the path from

the initial state to the deadlock may be composed of

several parts, computed by one classical thread and

multiple gp threads.

If a classical thread detects a counterexample by it-

self, it can directly report the counterexample formed

by its recursive stack. Otherwise, reporting the coun-

terexample can be done as follows. First of all the

recursive call stack forms the prefix, starting from the

initial state ι to some state α. Note that we know that

this prefix starts from ι since only classical threads can

report deadlocks.

Then, the thread must compute the path from α to

one deadlock state β. To do so, the thread will start

a new DFS from α, by only considering states that

are tagged deadlock gp. This restriction is then re-

peated at each step of the DFS. Indeed, after a gp

thread has detected a deadlock, all the states on its

DFS stack are tagged deadlock gp. Following a path

of deadlock gp states will necessarily result in dis-

covering a deadlock. Since the DFS will explore all

paths, the state β will be rediscovered.

Combining the prefix and the path of deadlock gp

states will build the whole counterexample.

5.2 Checking Liveness Properties

Until now, we only focused on the verification of safety

properties. The verification of complex temporal prop-

erties involves the exploration of an automaton which
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is the result of the synchronous product between the

state space of the system and the property automa-

ton [38].

In this settings, a state is composed of two parts:

the system state and the property state. Thanks to

the previous sections, we know how to build artificial

states for the system part.

Generating artificial initial states for the property

may be irrelevant. Indeed, these automata may have

a huge impact (in term of state) on the synchronized

product. Moreover, we know that only states synchro-

nized with some real state of the property automaton

will report a counterexample. The generation of arti-

ficial states for the property automaton may not be

relevant.

Nonetheless, genetic algorithms presented so far

can then be applied by considering that the property

state is a variable just like the other system’s vari-

ables. For a three states property automaton, we can

consider that the actual state in the property automa-

ton depends on a variable that can have three values:

1, 2 and 3 7.

The adaptation of the artificial state generation

is then straightforward: the system part is generated

as described in Section 3 while the property part is

generated as described earlier.

One should note that the generation of artificial

initial states for the synchronized product is not suf-

ficient for adapting Algorithm 6 for checking liveness

properties. Indeed, checking liveness properties involves

the use of an emptiness check in the automata tho-

eretic approach for explicit LTL model-checking. An

emptiness check is an algorithm looking for accepting

cycles in the synchronized product, i.e. cycles that

contain products states synchronized with some des-

ignated state of the property automaton.

Traditionally, two kinds of emptiness checks are

used in explicit model-checking8:

– NDFS-based [13]: two nested dfs are used to detect

accepting cycles. A first one looks for the accepting

state, while the second one looks for a cycle around

it.

– SCC-based [33]: one dfs is used to compute the

Strongly Connected Components (SCC) of the syn-

chronized product. As soon as an SCC containing

an accepting state is discovered a counterexample

can be reported.

7 Notice that mutation can be done ensuring that this
variable will not be less than 1 and not be greater than 3.
8 Here, we only describe our approach on Büchi au-

tomata, but the adaptation for generalized Büchi automata
is straightforward.

The adaptation of Algorithm 6 into these emptiness

check can be done as follows.

– For NDFS-based algorithms, when a gp thread de-

tects an accepting cycle, all the states forming

it are tagged with an accepting cycle status.

When a classical thread detects such a state, a

counterexample is raised.

– For SCC-based algorithms, when a gp thread de-

tects an accepting SCC, all the states forming it

are tagged with an accepting scc status. When

a classical thread detects such an SCC, a coun-

terexample is raised. One should note that tag-

ging all the states of an SCC can be done in quasi-

constant time using a union-find data structure

(see Anderson and Woll [2] for a lock-free imple-

mentation of this structure and see Bloemen et al.

[6] for its usage for computing SCC of a graph).

Notice that in both situations, as soon as a classi-

cal thread detects a counterexample, this latter one

can be immediately reported and all the other threads

stopped.

6 Evaluation

6.1 Overall evaluation

Benchmark Description. To evaluate the perfor-

mance of our algorithms, we selected 38 models from

the BEEM benchmark [28] that cover all types of mod-

els described by the classification of Pelánek [29]. All

the models were selected such that Algorithm 1 with

one thread would take at most 40 minutes on Intel(R)

Xeon(R) @ 2.00GHz with 250GB of RAM. This six-

core machine is also used for the following parallel

experiments9. All the approaches proposed here have

been implemented in Spot [12]. For a given model the

corresponding system is generated on-the-fly using Di-

VinE 2.4 patched by the LTSmin team10. Notice, that,

the swarming is ”reproducible”: for a given state and

for a given threads, the exploration order will always

be the same.

9 For a description of our setup, including selected mod-
els, detailed results and code, see http://www.lrde.epita.

fr/~renault/benchs/ISSE-2020/results.html. All experi-
ments can be replayed using either the Dockerfile available
at https://github.com/etienne-renault/swarmedgp-docker

or directly the Docker available at https://hub.docker.com/

r/akaesus/swarmedgp. Also note that the archive of all our
experiments has been published on Zenodo with (DOI):
https://doi.org/10.5281/zenodo.3707234
10 See http://fmt.cs.utwente.nl/tools/ltsmin/#divine for
more details. Also note that we added some patches (avail-
able in the web-page) to manage out-of-bound detection.

http://www.lrde.epita.fr/~renault/benchs/ISSE-2020/results.html
http://www.lrde.epita.fr/~renault/benchs/ISSE-2020/results.html
https://github.com/etienne-renault/swarmedgp-docker
https://hub.docker.com/r/akaesus/swarmedgp
https://hub.docker.com/r/akaesus/swarmedgp
https://doi.org/10.5281/zenodo.3707234
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Reachability. To evaluate the performance of the Al-

gorithm 5 presented in Section 4 we conducted 9158

experiments, each taking 30 seconds on the average.

Table 2 reports selected results to show the impact of

the fitness function and the mutation threshold over

the performance of Algorithm 5 with 12 threads (the

maximum we can test). For each variation, we provide

nb the number of models computed within time and

memory constraints, and Time the cumulated wall-

time for this configuration (to run the whole bench-

mark). For a fair-comparison, we excluded from Time

models that cannot be processed. Table 2 also reports

state-of-the-art and random (used to evaluate the ac-

curacy of genetic algorithms by generating random

states as seed states). This latter technique is irrele-

vant since it is five time slower than state-of-the-art

and only processes 32 models over 38.

If we now focus on genetic algorithms, we observe

that the threshold highly impacts the results regard-

less the fitness function used: the more the threshold

grows, the more models are processed within time and

memory constraints.

The table also reports the best threshold11 for all

fitness function, i.e. 0.999. It appears that greaterthan

only processed 37 models: this fitness function does

not seem to be a good one since (1) it tends to explore

useless parts of the state-space and (2) the variations

of the threshold highly impact the performance of the

algorithm. All the other fitness functions provide sim-

ilar results for a threshold fixed at 0.999. Nonetheless

we do not recommend equality since a simple vari-

ation of the threshold (0.7) could lead to extremely

poor results. Our preference goes to lessthan and

lessstrict since they seem to be less sensitive to thresh-

old variation while achieving the benchmark 9% faster

than state-of-the-art algorithm. Thus, while the speedup

for 12 threads was 3.02 for state-of-the-art algorithm,

our algorithm achieves a speedup of 3.31.

Note that the results reported in Table 2 include

the computation of the artificial initial states. On the

overall benchmark, this computation takes in average

slightly less than 1 second per model (30 seconds for

the whole benchmark). This computation has a neg-

ligible impact on the speedup of our algorithm.

We have also evaluated (not reported here, see

web-page for more details) the impact of the size of

the initial population and the size of each generation

over the performance. It appears that augmenting (or

decreasing) these two parameters deteriorate the per-

formance. It is worth noting that the best values of

11 We evaluate other thresholds like 0.9999 or 0.99999 but
it appears that augmenting the threshold does not increase
performance, see the web-page for more details.

all parameters are classical values regarding to state-

of-the-art genetic algorithms. Finally, for each model

(and lessthan as fitness), we compute a set of arti-

ficial initial states and run an exploration algorithm

from each of these states. It appears that 84.6% of the

7 866 005 486 generated states are reachable states.

The chart presented in Figure 6 evaluates the per-

centage of reachable states from a population of arti-

ficial initial states (computed with the best parame-

ter inferred from Table 2). The results are presented

model per model. For each model and for a given artifi-

cial initial state we evaluated the percentage of visited

states that are reachable from the real initial state. For

a model, the boxplot displays this percentage from

each artificial state in the population. Models are pre-

sented sorted according to their median value.

First of all, we can observe that all almost all mod-

els have at least one artificial state where all its suc-

cessors are reachable from the initial state. Moreover

one third of the models have more than a half of their

artificial initial states with more than 50 percent of

successors that are reachable. One can observe huge

variations depending on models: for instance, almost

all the states are reachable from any artificial state

in resistance.2 while there are few for blocks.3. A fine

grained study of these models reveal that models with

good results fall into two categories of the classifi-

cation of Pelánek [29]: Mutex and Communication-

Protocol. These models appear to be composed of

large SCCs or long cycles. A fine grained analysis of

these kind of model reveals that these state spaces are

most of the time constructed using variables that are

progressively incremented. We believe that this par-

ticular scheme is well suited for our techniques since

it increase the probability of generating a valid state.

Finally, this chart suggests that the function used

for the generation of artificial initial state may be cru-

cial for our algorithms but may also be dependent

of the kind of model targeted. We must admit that

we hopped that a generic fitness function would have

work for all the models: it appears empirically that

it could be of interest to build one dedicated fitness

function per category of model.

Safety properties. Now that we have detected em-

pirically the best values for the parameters of the ge-

netic algorithm we can evaluate the performance of

our deadlock detection algorithm. In order to evalu-

ate the performance of our algorithm we conduct 418

experiments. The benchmark contains 21 models with

deadlocks and 17 models without. Table 3 compares

the relative performance of state-of-the-art algorithm

and Algorithm 6. For this latter algorithm, we only re-

port the two fitness functions that give the best per-
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Threshold

0.7 0.8 0.9 0.999
nb Time (ms) nb Time (ms) nb Time (ms) nb Time (ms)

greaterthan 35 1 041 015 35 970 248 35 1 000 184 37 900 468
equality 35 3 217 183 35 965 259 35 934 947 38 907 148
lessthan 35 972 038 35 951 767 35 928 978 38 904 776
lessstrict 35 970 668 35 983 225 35 935 319 38 894 131

No threshold
random (trivial comparator to evaluate genetic algorithms) 32 5 079 869

Algorithm 1 (state-of-the-art with 12 threads) 38 978 711

Table 2 Impact of the threshold and the fitness function on Algorithm 5 with 12 threads (nb generation=3, init=1000,
pop size=50). The time is expressed in milliseconds and is the cumulated time taken to compute the whole benchmark (38
models); nb is the number of instances resolved with time and memory limits.

Algorithm 1 Algorithm 6
(state-of-the-art) lessthan lessstrict

Time (ms) States Time (ms) States Time (ms) States

Deadlocks 2 888 7.01e6 3 713 5.87e6 3 414 5.47e6

No deadlocks 516 152 5.79e8 462 881 6.73e8 468 683 6.82e8

Table 3 Comparison of algorithms for deadlock detection. Each runs with 12 threads, and we report the variation of two
different fitness functions: lessstrict and lessthan. Results present the cumulated time and states visited for the whole bench-
mark.

formance for reachability. Indeed, since Algorithm 6

is based on Algorithm 5 we reuse the best parameters

to obtain the best performance. Results for detecting

deadlocks are quite disappointing since our algorithm

is 15% to 30% slower. A closer look to these results

shows that deadlocks are detected quickly and Algo-

rithm 6 has degraded performance due to the com-

putation of artificial initial states. Nonetheless (and

unexpected behavior of our algorithms) the experi-

ments tends to show that when a deadlock exists our

deadlock detection algorithm require 15% less mem-

ory than state-of-the-art algorithm. The runtime for

detecting deadlock is nonetheless too small to infer

some particular property. A detailed evaluation of the

length of counterexamples in models where finding

deadlock is hard could be of interest to see if this

trends is verified.

On the contrary we observe that our algorithm is

10% faster (regardless whether we use lessthan or

lesstrict) than the classical algorithm when the sys-

tem has no deadlock. One can note that this algorithm

performs better than a simple reachability algorithm.

Indeed, even if the system has no deadlock: the algo-

rithm can find non-reachable deadlock. In this case,

the algorithm backtracks and the next generation is

processed. This early backtracking forces the use of a

new generation that will help the exploration of the

reachable states. To achieve this speedup, we observe

an overhead of 13% for the memory consumption. This

overhead is the consequence of generating states that

does not belong to the state space. The use of ded-

icated memory reduction techniques, such as partial

order reduction technique, could help to reduce this

footprint. Indeed, since POR only consider represen-

tative executions, some states will not be explored and

thus will not be stored.

Variations of the number of gp threads. All

the algorithms presented in this paper supposes that

only half of the threads perform an exploration based

on one or more artificial states. This restriction was

chosen based on the experiments of Table 1 where

half of the threads seems useless from the speedup

point of view. Figure 7 describes possible variations

on this approach. The main idea is to run Algorithm 5

with a variation on the percentage of threads using a

genetic programming approach. This Figure displays

three lines: dfs represents the state-of-the art while the

other lines represent the fitness functions combined to

the best parameters observed in Table 2. The first line

is horizontal, since it represents the state-of-the-art,

which does not use genetic programming, and thus

insensitive to this variation. For the two other lines,

it appears that the percentage of threads using a ge-

netic approach has a strong impact on the results.

Indeed, even with a few percentage (20%) of threads

using genetic programming, we observe a 11% reduc-

tion of the total time to run the benchmark. Nonethe-
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Fig. 6 Distributions of reachable states from a population of artificial initial states.

less we can observe that these performances are de-

graded while the percentage of gp threads augments.

Indeed, gp threads may explore states that are not in

the state space and using too much of these threads

will not help classical threads to explore concurrently

this state space. Notice that compared to results pre-

sented in Table 2, the variation of the percentage of

the gp threads helps to obtain around 2.5% more re-

duction of the total time for this benchmark. Even

if these variations are relatively small they tends to

suggest that around 30% of threads are still useless.

Portfolio algorithms, where 30% of threads run differ-

ent exploration algorithms (e.g symbolic approaches),

could help to decrease the global runtime.
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Fig. 7 Impact of the percentage of threads using genetic programming. Experiments were run with 12 threads. The dfs
horizontal line represents state-of-the art while lessthan and lessstrict (the fastest for 20%) represents the fitness functions
combined to the best parameters observed in Table 2.

6.2 Comparison with State-of-The-Art Algorithms

This section compares the techniques proposed in this

paper with other approaches that are known to scale

correctly up to 12 cores (the maximum we can test):

– cndfs[13]: the best parallel nested detpth-first search.

It implements two swarmed nested-DFS with syn-

chronizations to ensure the validity of the shared

information.12

– ufscc[5]: the best parallel SCC-computation algo-

rithm. It performs a swarmed DFS with a work-

stealing mechanism integrated into a union-find

data structure.13

– symbolic [36]: the best parallel symbolic reacha-

bility algorithm. It uses parallel BDD to compute

the set of reachable states.14

Since the three previous algorithms were devel-

oped by the LTSmin team, we opted to run the bench-

mark of the previous section against their own tool15.

Notice few details about this comparison:

1. The setup for running the benchmark were slightly

modified: the 40 minutes runtime limitation is post-

poned to 3 hours. Nonetheless we still use the same

machine.

12 dve2lts-mc –strategy=cndfs –threads=... -s 29 –perm=shift
13 dve2lts-mc –strategy=ufscc –threads=... -s 29 –perm=shift
14 dve2lts–sym –saturation=sat –order=bfs-prev -rf –lace-
workers=...
15 https://ltsmin.utwente.nl

2. All the algorithms load the same model, i.e., a

shared library that only offers two functions: one

for retrieving the initial state, and the other that

compute a list of successors from a given state.

This library respect the PINS interface [21] and it

well suited for on-the-fly model-checking.

Figure 8 presents the comparison of our techniques

against the aforementioned algorithms. This figure de-

tails, for each algorithm and for a given number of

threads, the runtime required to process the whole

benchmark (notice that the y-axis uses a logarithmic

scale). The names of algorithms are straightforward:

for instance ltsmin/cndfs refers the cndfs algorithm

from the LTSmin tool. We opted to only benchmark

the lessthan variation of our genetic approach (Al-

gorithm 5), denoted spot/gp-dfs-lessthan, since it

achieves the best results (empirically, according to the

previous section).

First of all we observe that, for 12 threads, cndfs

and ufscc obtain a speedup contained between six

and eight, while our implementation of a single DFS

(spot/dfs, see Algorithm 1) only achieves a speedup

of three. Nonetheless, a closer look to sequential per-

formances shows that spot/dfs is 5 time faster than

cndfs and 3 time faster than ufscc. This difference

introduces a bias when comparing the speedup of the

different algorithms. To mitigate this effect one can

compute the speedup relative to the fastest sequential

algorithm, i.e. spot/dfs. When doing so, it appears

https://ltsmin.utwente.nl
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that cndfs achieves a speedup of 1.27 and ufscc a

speedup of 2.38. This confirms the results presented

in Table 1 and highlights the need for new techniques

to obtain better speedups in parallel model-checking.

Figure 8 also displays the result using parallel BDD

(ltsmin/symbolic). It appears that one out of 38

models is not processed within the three hours lim-

itation using less than 4 threads. Moreover, the re-

sults of the symbolic approach are really disappointing

compared to explicit approaches even if a reasonable

speedup is achieved with 12 threads. These poor re-

sults are the direct consequence of using the PINS in-

terface which is well-suited for on-the-fly computation

but not adapted for building the symbolic transition

relation of the model. Indeed, LTSmin relies on two

basic functions: initial state and next state: ini-

tial state returns the initial state s ; next state

returns the successor states of state s. This interface

allows explicit-state (enumerative) algorithms to be

implemented for any language, but it has very limited

use in combination with symbolic techniques due to

the fact that it needs to call the next-state function

for every state. Attempts have been made by LTSmin

to optimize this using event locality and the imple-

mentation of PINS-2-PINS wrappers [7, 8, 26]. Our

settings for the ltsmin/symbolic also uses satura-

tion techniques well suited for multi-core on-the-fly

symbolic algorithms [37]. During our experiments we

observe differences that are quite modest compared to

symbolic approach without saturation. To summarize,

the symbolic approach cannot compete with explicit

techniques on a benchmark (BEEM) dedicated to the

comparison of explicit model-checkers.

Finally, Figure 8 shows that all (explicit) algo-

rithms seem to reach a plateau (around 8 threads)

where adding new threads does not improve signifi-

cantly the results. If we observe the genetic program-

ming approach of this paper, we note that it helps to

reduce this “plateau effect”.

6.3 Linear Topology

Few models in the previous benchmark have a linear

topology (as the one of the Figure 1) which can be

considered as the perfect one for the algorithms pre-

sented in this paper. In such model, using one or more

threads will result in the same running time.

To evaluate the performances of our genetic pro-

gramming algorithm, we decided to run Algorithm 5

(with the lessthan fitness function) against a linear

(parametric) model with 150 processes and 300 vari-

ables. This model was built so that the genetic algo-

rithm can exploit the bounds of the different variables

(that are known a priori).

Figure 9 presents the results of this evaluation.

For a given size of model, the running time is re-

ported for the swarmed DFS with 12 threads, as well

as for the lessthan variation. It should be noted that

for all experiments, running spot/dfs with only one

thread achieves 5% better. This is due to the con-

tention over the hash table. Indeed, since the system

is linear and since all threads have similar through-

put, at any moment all threads try concurrently to

insert the same states. This induces caches problems

which slow down the algorithm. Moreover, each thread

has its own stack to maintain, which implies a bigger

memory footprint and thus a runtime overhead.

A closer look to the Figure 9, shows that Algo-

rithm 5 is in average 40% faster than the swarmed

DFS of Algorithm 1 regardless the size of the model

considered.

These results are encouraging since it demonstrate

that the generation of artificial initial states can bring

significant speedup where classical parallel algorithm

are stuck due to the topology of the model and their

exploration order.

Discussion. Overall, we observe a global improve-

ment of state-of-the-art algorithm over the various

benchmarks we have tested. We believe that other fit-

ness functions (based on interpolation or estimation

of distribution) could help to generate better states,

i.e. deep with respect to many DFS orders. Moreover,

the generation of new states could be improved using

other techniques like neural networks.

7 Conclusion

We have presented some first and new parallel graph

exploration algorithms that rely on genetic algorithms.

We suggested to see variables of the model as genes

and states as chromosomes. With this definition we

were able to build an algorithm that generates artifi-

cial initial states. To detect if such a state is relevant

we proposed and evaluated various fitness functions.

It appears that these seed states improve the swarm-

ing technique. This combination between swarming

and genetic algorithms has never been proposed and

the benchmark shows encouraging results: 10% faster

than state-of-the-art algorithms on a general bench-

mark and 40% on a specialized benchmark. Since the

performance of our algorithms highly relies on the gen-

eration of good artificial states we would like to see if

other strategies could help to generate better states.

We also observed that a small percentage of threads
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using genetic programming is sufficient to obtain a

good speedup.

We also demonstrated the correctness of our al-

gorithms and described how they can be adapted to

report counterexamples.

This work mainly focused on checking safety prop-

erties even if we proposed an adaptation for liveness

properties. A future work would be to evaluate the

performance of our algorithm in this latter case. We

also want to investigate the relation between artificial

state generation and POR, since both rely on the anal-

ysis of processes variables. Finally, we strongly believe

that this paper could serve as a basis for combining

parametric model-checking with neural network.
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29. Radek Pelánek. Properties of state spaces and their
applications. International Journal on Software Tools
for Technology Transfer (STTT), 10:443–454, 2008.

30. Doron Peled. Combining partial order reductions with
on-the-fly model-checking. In David L. Dill, editor,
Proceedings of the 6th International Conference on
Computer Aided Verification (CAV’94), volume 818 of
Lecture Notes in Computer Science, pages 377–390.
Springer-Verlag, 1994.

31. John H. Reif. Depth-first search is inherently sequen-
tial. Information Processing Letters, 20:229–234, 1985.

32. Etienne Renault. Improving parallel state-space explo-
ration using genetic algorithms. In Mohamed Faouzi
Atig, Saddek Bensalem, Simon Bliudze, and Bruno
Monsuez, editors, Proceedings of the 12th International
Conference on Verification and Evaluation of Com-
puter and Communication Systems (VECOS’18), vol-
ume 11181 of Lecture Notes in Computer Science, pages
133–149, Grenoble, France, sept 2018. Springer.

33. Etienne Renault, Alexandre Duret-Lutz, Fabrice Kor-
don, and Denis Poitrenaud. Variations on parallel ex-
plicit model checking for generalized Büchi automata.
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