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Abstract We introduce Go2Pins, a tool that takes a

program written in Go and links it with two model-

checkers: LTSMin [26] and Spot [10]. Go2Pins is an ef-

fort to promote the integration of both formal verifi-

cation and testing inside industrial-size projects. With

this goal in mind, we introduce black-box transitions, an

efficient and scalable technique for handling the Go run-

time. This approach, inspired by hardware verification

techniques, allows easy, automatic and efficient abstrac-

tions. Go2Pins also handles basic concurrent programs

through the use of a dedicated scheduler. Moreover, in

order to efficiently handle recursive programs, we intro-

duce PSLRec, a formalism that augments PSL without

changing the complexity of the underlying verification

process.

In this paper we demonstrate the usage of Go2Pins

over benchmarks inspired by industrial problems and

a set of LTL formulae. Even if Go2Pins is still at the

early stages of development, our results are promising

and show the the benefits of using black-box transitions.

This paper also shows how Go2Pins is able to work

efficiently on two bugs coming from industrial problems

Kubernetes and Trillian.

1 Introduction & Motivation

The Go programming language was designed at Google

in 2009 [23] to improve programming productivity in an

era of multicore, networked machines and large code-

bases. Inspired by the idea of Communicating Sequen-

tial Processes (CSP) [24], designers focused on two prin-

ciples: (1) having lightweight and easy to create threads
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(called goroutines) and, (2) promoting communication

across threads by explicit messaging (through chan-

nels) rather than by shared memory. Even if other lan-

guages have also been designed to tackle similar prob-

lems (occam and erlang), Go is probably the first

large scale, widely used, industrial language to integrate

these distinctive CSP features.

Previously (and except for occam and erlang),

mainly academic formal languages, implementing vari-

ations around the notion of CSP, have been developed:

promela, uppaal, dve, gal, cspM, etc. These lan-

guages have been built as a support for developing ver-

ification tools and their associated theory but have sel-

dom been used in the industry.

The main idea defended in this paper is to consider

the Go language not only as a disruptive, efficient, in-

dustrial, statically typed, compiled programming lan-

guage but also as a good candidate for the specification

and verification of asynchronous systems. Indeed, most

of the time formal languages are only used for modeling

and verification while the actual implementation of the

system is done in another language for efficiency. This

switch between languages is error-prone since bugs can

be introduced at each level. Moreover, most formal lan-

guages do not have associated compilers or interpreters:

this is annoying since the only way to test the validity

of the model is to express the desired behaviors through

a temporal logic 1.

This paper tackles these problems by introducing

Go2Pins: a Go-based unified framework for testing, mod-

eling, verification, and efficient implementation of sys-

tems. This paper also introduces black-box transitions

(see Section 4), an efficient and scalable technique for

handling the Go runtime. This approach, inspired by

1 Note that in the particular context of CSP, validity can
also be checked using refinement.
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hardware verification techniques, allows easy, automatic

and efficient abstractions. Even if this idea is not new

(premises of this technique are available the SPIN model

checker), we extend it to be automatic, and then well

suited for verifying large software systems.

In addition to the above (common with our previ-

ous paper [27] published at the SPIN’21 conference),

this paper gives more clarification about the transla-

tion process (Section 3.1) and show how to add the

support of structures, interfaces, and duck-typing in

Go2Pins. This paper also test Go2Pins against two in-

dustrial problems (Section 9) and compares it to latest

advances in the verification of Go programs (Section 8

and 9). Finally, this paper also introduces PSLRec, a

new formalism that augment PSL (a superset of LTL)

without changing the complexity of the underlying ver-

ification process (Section 5 and 7).

2 Go2Pins: Overview

This section describes our journey towards the verifica-

tion of Go programs. Figure 1 describes an overview of

Go2Pins: the program to verify is processed by Go2Pins

which produces a binary called go2pins-mc. This bi-

nary can then be used to verify any LTL formula (over

the input program) using one of the two supported

backends: LTSMin [26] or Spot [10]. These backends

have been selected because (1) LTSMin is a widely used

parallel verification tool that supports both explicit and

symbolic model-checking and (2) because Spot is known

to be an efficient modular framework for developing

verification-based tools and techniques.

Figure 2 provides more details about the Go2Pins

approach. At coarse grain, the input program is pro-

cessed by the core of our tool and then translated into

the Partitioned Next-State Interface (PINS) [26]. This

interface exposes two functions: one for retrieving the

initial state of the system, and one for computing the

successors of a state. Any program that exposes this

interface is thereby compatible with any (explicit or

symbolic) model checking solution that supports it (for

instance LTSmin or Spot). Then, Go2Pins produces

a set of files that are compiled together to build the

go2pins-mc binary. We opted for this workflow since

(1) it provides more flexibility, (2) it can be easily ex-

tended and (3) our code remains in the Go realm (useful

for black-box transitions, see Section 4).

At fine grained level, our approach behaves like a

transpiler2 that translates the input Go program into

2 In compiler realm, a difference is made between compil-
ers that usually produce a directly usable artifact whereas
transpilers produce another form of source code.

an output Go program that respects the PINS inter-

face. This transformation has many advantages. First,

it benefits from both the reflexivity and the standard

library of the Go language. The reflexivity lets us avoid

the development of the classic toolchain of a transpiler

(scanner, parser, AST, etc.), while the use of the stan-

dard library lets us avoid redeveloping concepts such as

Control Flow Graph, Call Graph, etc. The second ben-

efit of our approach is the ease of building abstractions

(see Section 4).

Figure 2 shows that Go2Pins processes the input

program in steps. Each one modifies the Abstract Syn-

tax Tree (AST) in order to desugar a specific feature.

For instance, the Arith&Assign step decomposes com-

plex arithmetic operations into consecutive elementary

ones. For instance v1 := 3 * g(n) * h(n) is trans-

lated into three instructions: v1 := 3, then v1 *= g(n)
and finally v1 *= h(n). Thus, this step does not change

the semantics of the original program but simplifies it

in order to be used by model-checkers.

With this workflow, it is easy to test each step. For

almost all steps presented in Figure 2, we can just apply

the step on some input, run the modified program and

check that the behavior stay unchanged.

Among the various steps in Go2Pins, some are of

special interest:

1. TypeChecker. Ensures, via type deduction, that

the current limitations of Go2Pins are respected.

Currently Go2Pins is limited to unbuffered chan-

nels, Integer variables and a static number of gor-

outines (i.e. dynamic goroutine creation is not yet

supported). Note that these kind of restrictions are

common to most verification tools. Section 4 details

how these restrictions can be by-passed.

2. Core (Func. Def. to Transform). This is the

core of Go2Pins: it translates the program into a

structure that can easily be adapted to match the

PINS interface (more details in Section 3.1).

3. Recursion. Since Go2Pins only works with finite

state spaces (with possibly infinite behaviours), a

specific attention must be paid to recursion. This

step unrolls each function up to a limit fixed by

the user. Since the depth of recursion is fixed, only

bounded verification can be done on recursive pro-

grams.

4. DuplicateGoroutines. This step adds the support

for goroutines, i.e. multi-threaded programs. This is

achieved by the implementation of a scheduler that

returns all the possible interleavings from a given

state. More details can be found in Section 3.3 and

Section 9.
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Fig. 1 Overview of Go2Pins. The input file is processed by Go2Pins which produces a binary called go2pins-mc. This binary
can then be used to verify LTL formula using one of the two supported backends: Spot or LTSmin.
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Fig. 2 Contributions of this paper (all except gray boxes). The dashed boxes represent the Go2Pins tool while the blue
plain box represents the output directory produced by Go2Pins. The transformation steps are denoted by double shaped red
boxes. Files grouped under the name boilerplate are copied as-is into the output directory. These files are generic and handle
communication between the desugared program and the mandatory functions to respect the PINS interface.

5. Black-Box. This module reduces the state space

explosion problem by fusing consecutive transitions

into a single one (more details Section 4).

Fortuitous behaviour of our approach. During the

conception of our tool, we were advised that a lot of

transpilers targeting Go exist. Some of these tools were

developed by the Go Team in order to translate some

parts of the Go compiler (originally written in C) into

Go. Thus, our workflow transitively supports model-

checking these mainstream languages (details in Fig-

ure 2 and Section 7).

3 Implementation Details

3.1 Core translation: Func. Def. to Transform

The core of Go2Pins (steps Func. Def. to Transform of

Figure 2) translates the input program into a structure

that can be easily adapted to match the PINS interface.

This interface exposes two functions: one for retrieving

the initial state of the system (represented by a vec-

tor of N integer variables), and one for computing the

successors of a state3. The illustration of this transfor-

mation is given in Listing 1 for an original program and

Listing 2 and 3 for the transformed program.

3 Model checkers represent the model as a Kripke structure.
These two functions are enough to provide a Kripke view of
a Go program.
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1 func fibo(n int) int {
2 n0 := 0
3 n1 := 1
4 for i := 0; i < n; i++ {
5 n2 := n0 + n1
6 n0 = n1
7 n1 = n2
8 }
9 return n1

10 }
11
12 func main() {
13 fibo(5)
14 }

Listing 1 Fibonacci computation in Go

1 type state [15]int
2
3 func G2PF_fibo(s state) state{
4 switch s.LabelCounter {
5 case 0: goto label0
6 //...
7 case 12: goto label12
8 }
9 label0: // n0 := 0

10 s.fibo.n0 = 0
11 s.LabelCounter = 1
12 s.fibo.isalive = 1
13 return s
14 //...
15 label12: // return n1
16 s.fibo.res0 = s.fibo.n1
17 s.fibo.FunctionCounter =
18 s.fibo.caller
19 s.fibo.LabelCounter =
20 s.fibo.callerLabel
21 return s
22 }

Listing 2 Fibonacci translation (1/2)

23 func G2PF_main(s state) state {
24 switch s.LabelCounter {
25 case 0: goto label0
26 //...
27 case 2: goto label2
28 }
29 label0:
30 s.fibo.n = 5
31 s.fibo.caller =
32 s.FunctionCounter
33 s.fibo.callerLabel = 2
34 s.FunctionCounter = 1
35 s.LabelCounter = 0
36 return s
37 //...
38 label2:
39 //...
40 }

Listing 3 Fibonacci translation (2/2)

41 func G2PEntry(src state) []state {
42 r := make([]state, 0)
43 r := append(res, G2PF_main(src))
44 // From here it’s the scheduler
45 // detailed Section 3.2
46 // Build all valid successors
47 for _, g := range goroutines {
48 r = append(r, g.Fun(src))
49 }
50 // See Listing 1.6
51 return r
52 }

Listing 4 Dispatch in Go2Pins

53 func get_successors(src state,
54 cb CB /*Callback*/) int {
55
56 // Compute all successors
57 dsts := G2PEntry(src)
58
59 // Call the model checker
60 // callback for each succ
61 for _, dst := range dsts {
62 CB(cb, dst)
63 }
64 }

Listing 5 Successor computation

The first step of this translation is to build a (finite)

state vector for the program given in Listing 1. To build

this vector, we must compute the total number of vari-

ables that are used. Here, four variables n, n0, n1 and

i are displayed but Go2Pins requires extra-variables:

1. The program counter indicating the line currently

executed. This information is hidden in Listing 1

since it is generally handled directly by the micro-

processor. For the sake of clarity we opted for a two

variables representation of this counter: a variable

FunctionCounter that indicates the current func-

tion, and a variable LabelCounter that indicates the

current instruction.

2. Another piece of information that is usually tracked

at the assembly level is the return address, i.e., the

position where the execution should continue after

a return statement (or the end of the function). As

previously two variables per function are used: ⟨fun-
name⟩.caller that indicates the return function and

⟨fun-name⟩.callerLabel that specifies the instruction
in this function.

3. When a function returns one or multiple values, a

placeholder for these values should be available. In-

deed, since these values may be used in various con-

texts (assignments, comparisons, etc.), the place-

holder will represent them until their final use is

detected. As a consequence, Go2Pins uses X place-

holder variables ⟨fun-name⟩.resX, where X denotes

the Xth return value.

4. Finally, each variable in the original program is asso-

ciated to an extra variable isalive ⟨var-name⟩. This
is required in order to handle complex initialization
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such as a := f(). In this assignment the value of a

is only known after the evaluation of f(). Since the

PINS interface represents the program as a vector

of integers, a default value must be fixed for all vari-

ables (here 0). As a consequence, a model-checking

procedure may fail by considering this default value.

Thus, the extra variable indicates whether or not the

variable a has already been initialized. Due to lack

of space, this transformation is not depicted here

but would appear in line 14.

To respect the PINS interface, the previous variables

are collapsed into a vector of integers (line 1, Listing 2).

Since this vector handles all values of all variables at a

given time, it can be see as a snapshot of the system.

Listings 2 and 3 also detail the other modifications per-

formed during the core translation (for the sake of

clarity names are explicit, while our translation manip-

ulates indexes: for instance, s.fibo.res0 is then trans-

lated into s[2]):

– Each name has been changed to G2PF ⟨fun-name⟩
and its parameters have been replaced by a single

parameter: the state vector representing the actual

status of the execution (line 3 and 23).

– Each instruction of the original program has been

extracted into a dedicated block of code (see lines

9–12 or 14–20 for an example). This block is accessi-

ble from a switch statement at the beginning of the

function (lines 4–8 or 24–28). This switch uses the

LabelCounter to detect the instruction to execute

and then jump to the corresponding block.

This transformation in blocks relies on the com-

putation of Basic Blocks and Control Flow Graph

(CFG). Basic Blocks are sequences of instructions

without jumps (conditional or not) while the Con-

trol Flow Graph is a graph that represents all of

the execution paths of the function and links each

basic block to its potential successors. For the pur-

pose of our tool we restrict basic blocks to contain

only one instruction of the original program. As a

consequence, the CFG represents the successors of

each instruction. With this CFG, each basic block

can now be augmented to update FunctionCounter

and LabelCounter. In particular, moving inside a

function modifies the LabelCounter (line 11) while a

call to another function modifies both variables(line

16–19 and 24–35) . For instance, line 9 details the

modification of the LabelCounter while lines 14 to

17 modifies both counters since they represents the

original return statement.

The last step of the translation aggregates all the

previous transformations in order to fit the PINS inter-

face. With this architecture, the PINS get successors

(Listing 5) delegates the processing to GP2Entry (List-

ings 4) which transitively4 delegates to the current func-

tion G2PF ⟨fun-name⟩. This strategy preserves (with

a minimal overhead) the structure of the original pro-

gram which is helpful for debugging or producing traces

during the verification procedure.

Discussion. The translation schemes depicted previ-

ously are very technical and may be confusing for a

reader non familiar with both the Go language and

the architecture of Go2Pins. In order to clarify these

schemes, Figure 3 describes, at an higher level, some of

the aforementioned translations. The goal of Go2Pins

is to provide a Kripke view of a program written in

Go. Consequently, each translation scheme builds a part

of a Kripke structure. By applying repeatedly these

schemes, from the main entry point we are able to build

the whole Kripke structure.

Let us first focus on the first translation which rep-

resents the assignment of a complex expression α in the

variable a. In this scheme, the orange states represent

the statement(s) that precedes the current translation

while gray diamonds represent statements/expressions

that must be recursively translated. In order to trans-

late a = α, α must be translated first. Then the value

computed by α must be assigned in a. This is achieved

by using the Θ(var name) notation. Since a state is

represented as an integer array, this notation returns

the index of the var name variable in this array. Then,

the variable a.is alive is set to true (the constant 1), in-

dicating that the variable a is now initialized. The last

state (white state), only represents the next statement

to be translated5.

The second translation scheme details the transla-

tion of a conditional statement. Similarly to the previ-

ous scheme, cond, α, and β must be recursively trans-

lated. Even if Go2Pins produces both the α and the β

branches, the resulting Kripke structure will only have

one of the two branches, depending on the value of cond.

The scheme for the for statement is straightfor-

ward: it only splits the various parts of the statement

and combines all together. Similarly to the previous

schemes, this translation will build a sub-Kripke struc-

ture that is ”linear”, i.e. one instruction only produces

a sequence of states. The only translations that are not

linear are translation schemes for concurrency primi-

tives (more details section 3.3).

4 This is achieved by building one last extra function:
G2PMain (see line 42). This function takes a state vector
as a parameter and returns an initialized state vector during
the first call. Then, this function dispatches the processing of
the computation to the function under execution.
5 In practice, this state represents the increment of the pro-

gram counter.
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a := α
θ(a) = α

if cond { 
   α
} else {
   β
}

cond

β

α
for i := 0;cond; i++{ 
   α
}

!condθ(i) = θ(i) +1

θ(a.isalive) = 1α

αcond

!cond

i := 0 cond

cond !cond

func  foo() int {
    γ
    return 42
}

α
foo()
…

γ

θ(foo_res0) = 42,
θ(pc) = *θ(pc) +1

θ(pc) = *θ(foo.caller) 

θ(pc) = *θ(pc) +1

θ(pc) = *θ(pc) +1

21
22
23

77
78

αθ(pc) = *θ(pc) +1

*θ(foo.caller) = 79 
*θ(pc) = 21

79

Fig. 3 Description of some translation schemes. Orange circle
denotes the current state, white circle the instruction after the
one in translation, grey diamond represents not yet translated
patterns while grey circles represent intermediate states.

The two last schemes are dedicated to the transla-

tion of functions and sequences of instructions. In order

to have a better visualisation, we also annotate lines by

their identifiers (red numbers) and describe here how

the program counter (pc) is managed (while the previ-

ous translations hide this management 6). One can ob-

serve that, every edge increments the program counter

(∗Θ(pc) means the value stored at pc). One can also

note that the final instruction retrieved the value of

foo.caller. A closer look to the last schemes, reveals that

this value is fixed to the instruction to be executed after

the call to the foo function.

6 Here we merge LabelCounter and FunctionCounter for the
sake of clarity.

3.2 Support for Stuctures and Interfaces

At first glance, structures (struct) in Go look very sim-

ilar to C structures: they provide an easy mechanism

to pack collection of typed fields (variables) together.

Nonetheless, structs are also, and mainly, used for object-

oriented programming.

In Go, the object-oriented paradigm is very differ-

ent from the one of C++ or Java. Indeed, Go architects

preferred (1) composition over inheritance and (2) in-

terfaces over subclasses. Since object-oriented paradigm

is mostly the implementation of the is-a concept it can

be implemented in many different ways. The C++ or

Java implementation requires to define a full hierarchy

while the Go implementation prefer compositions/in-

terfaces that are more flexible. An interface is a contract

of implicit behaviors. Using interfaces has the advan-

tage of making code more economical, more readable,

provides good APIs between packages and reduces rep-
etition. The design choices of Go, commonly referred as

Duck-Typing 7, can be viewed as a usage-based struc-

tural equivalence between a given object and the re-

quirements of a type. In other words an object is of

a given type if it has all methods and properties re-

quired by that type. Listing 6 presents an example of

duck-typing that displays alternatively ”Hello there!”

and ”Bark bark!”.

1 type Speaker interface {
2 Say()
3 }
4
5 type Human struct {
6 age int
7 }
8
9 type Dog struct {

10 }
11
12 func (h Human) Say() {
13 fmt.Println("Hello there!", h.age)
14 }
15
16 func (h Dog) Say() {
17 fmt.Println("Bark bark!")
18 }
19
20 func main() {
21 var s Speaker
22 for i := 0; i < 20; i++ {
23 if i%2 == 0 {
24 s = Dog{}
25 } else {
26 s = Human{i}
27 }
28 s.Say()
29 }
30 }

Listing 6 Duck Typing in action.

7 or structural typing
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In order to handle such program, Go2Pins must

catch two things: (1) structs definitions (lines 5 to 10)

and (2) interfaces (lines 1-3, 12-18, and 28).

1. Supporting structs definitions.Go2Pins performs

a first pass that collects information about struc-

tures, e.g. the various fields, their types, their size,

etc. With this information, we are then able able

to calculate the exact size of our struct, by simply

counting each the size (in integers) of each field 8.

During this process, we keep compute one unique

identifier for each structure.

Then a second pass translates structures as arrays.

Each access to one fields of the structure is then

rewritten as an array subscript. For instance, s.age

is translated as s[1]. Note that the age field is not at

index 0 but 1 since index 0 contains metadata (the

unique identifier).

2. Supporting interfaces. With the previous trans-

lation, Go2Pins must now handle interfaces. Con-

cretely this means that each virtual dipatch 9 must

be replaced by something that simulates the gener-

icity of interfaces.

This is achieved by implementing a dispatcher that

exploits the meta-information computed during the

previous step. Listing 7 details such a dipatcher lines

9 to 15.

1 var ( // Structs
2 Human_struct int = 1
3 Dog_struct int = 2
4 )
5
6 //...
7
8 func Speaker_Dispatcher_Say(s [2]int) {
9 if s[0] == Human_struct {

10 Human_Say(s)
11 } else if s[0] == Dog_struct {
12 Dog_Say(s)
13 } else {
14 panic("Unreachable point: undefined struct")
15 }
16 }
17
18 // ...

Listing 7 Meta-information and dispatcher for structs and
interfaces

In practice, structures with different size can match

the same interface. In this case, Go2Pins only consider

the biggest one for the implementation of the dispatcher.

In other words, smaller structures will be enlarged and

zero-filled in order to match the biggest structure used

for a given interface.

8 Note that Go2Pins handles the same way, nested struc-
tures.
9 Virtual dispatches are calls to function Say()

3.3 Handling Concurrency: Goroutines and Unbuffered

Channels

The previous sections present the core translation for

sequential programs. Nonetheless the main application

of model checking is the verification of concurrent pro-

grams where bugs are hard to find and reproduce. The

concurrency in Go is provided through two elements:

goroutines and channels. Goroutines are triggered by

the go instruction and spawn lightweight threads. Chan-

nels are communication features that, contrarily to shared

variables, avoid data races. In order to support gorou-

tines, Go2Pins implements a scheduler. Indeed, at any

moment, both the main thread as well as any active

goroutine can progress. An active goroutine is a gorou-

tine that (1) has been spawned by the go keyword and,

(2) that is not yet finished. Consequently, this status is

stored in the state vector (so that the scheduler can ar-

range the various goroutines). Additionally, since each

goroutine needs its own recursive stack, a preprocess-

ing phase is required to reserve slots for each function

that could be called by each goroutine. This process-

ing is similar to the one done for unrolling recursive

functions.

Support for channels also requires to have dedicated

slots in the state vector. These slots catch goroutines

that are about to perform a synchronization operation

through the channel. As soon as our scheduler detects

two of these goroutines, a synchronization is triggered.

In other words the scheduler ensures a simultaneous

progress of the two goroutines. Listing 8 details this

part of the scheduler (and finalize the code of Listing 4,

line 48). It can be observed that the set of successor is

only composed of a set of PINS vectors.

final := []
// walk all successors and keep only valid ones
for _, s := range r {
if ∃ one channel with (at least) a pending

read and a pending write {
tmp := generate all read/write synchronizations

on this channel
final = append(final, tmp)

} else if s has no pending operations
on channels {

final = append(final, s)
}

}
r = final

Listing 8 Scheduler that synchronizes operations on chan-
nels
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4 Abstraction with Black-Box Transitions

4.1 Overview of black-box transitions

The main problem that arises when verifying large (con-

current) software systems is the state-space explosion

problem since all of the details must be represented

to catch all possible behaviors. One way to tackle this

problem is to use approximations that remove some ir-

relevant details in order to reduce the size of the state

space. Two kind of approximations exist:

– over-approximations contain more behaviors than

the full system. Thus, if there is no error in an

over-approximation, then there is no error in the

full system. On the other hand if an error is found

in an over-approximation it can be spurious. Over-

approximations cannot prove presence of errors.

– under-approximations contain less behaviors than

the full system. Thus if there is an error in an under-

approximation, then this error is real error in the

full system. On the other hand, absence of errors

in an under-approximation does not imply absence

of errors in the full systems. Under-approximations

cannot prove absence of errors.

1 package main
2
3 import "fmt"
4 import "math"
5
6 func foo(n int) int {
7 return n * 2
8 }
9

10 func main() {
11 a := int(math.Sqrt(42))
12 a = a + foo(a)
13 fmt.Println(a)
14 }

Listing 9 Simple computations

In this paper, we introduce the black-box tran-

sitions technique in order to overcome limitations of

both over and under-approximations. The underlying

idea is to automatically build a representation of the

program that abstracts away all behaviors irrelevant

for the verification procedure while keeping effective-

ness for proving correctness of properties or finding er-

rors. This technique can be seen as a structural reduc-

tions and takes its roots in the work of Lipton [32] and

Berthelot [2]. Nowadays, these reductions are still con-

sidered as an attractive way to alleviate the state explo-

sion problem [28, 3]. Structural reductions strive to fuse

structurally ”adjacent” events into a single atomic step,

leading to less interleaving of independent events and

less observable behaviors in the resulting system. While

structural reductions traditionnaly work only on “user-

code”, the black-box transition technique proposed here

goes further by (1) avoiding complex computation for

the abstraction and (2) allowing to fuse events/func-

tions in imported code.

In order to illustrate the black-box transition tech-

nique, let us consider the example depicted in Listing 9.

This example only performs arithmetical operations: it

first calls math.Sqrt (line 11) which is part of the Go

standard library and then calls foo (line 12) which is

a local function. The result is then printed (line 13).

Suppose now that we want to check the (correct) LTL

property FG ’a > 1’, which express that a will end to

be strictly greater than 1.

Trying to verify this property over this program is

hard due to lines 11 and 13. Indeed since both of these

lines are calls to functions that belong to the Go stan-

dard library, the source code of these functions is not

available10. Consequently the translation depicted in

Section 3.1 will not work. More generally this prob-

lem occurs with any Go program that links with an

external library. This problem is annoying since this is

a common situation in any large system.

Fortunately, when checking FG ’a > 1’, we are only

interested in (1) the value of the variable a and (2)

the value returned by the math.Sqrt function. All the

details of the math.Sqrt functions are irrelevant for the

verification procedure.

The black-box transitions technique exploits this

particularity by directly callingmath.Sqrt. The returned

value is then set in the slot corresponding to a in the

PINS vector. More generally, the black-box transitions

technique automatically identifies external function calls,

and directly insert the result of these calls during the

core translation described Section 3.1 11. To achieved

this some manipulation of the PINS vector are required

to fill the parameters of the function.

The example of Listing 9 depicts black-box func-

tions with integer parameters. Nonetheless Go2Pins sup-

ports passing variables as arguments. In this latter case,

Go2Pins simply copy the correct slots of the PINS vec-

tor into the formal arguments of the function. Since

Go2Pins does not (yet) support references, there is no

consistency problems.

Thus, black-box helps to reduce significantly the

state-space of the program. For instance, the state-space

of the program in Listing 9 has only 12 states which is

low considering that the definition of both math.Sqrt

10 The runtime of programming language is traditionally
provided as a dynamic library.
11 Notice that this technique is only possible since Go2Pins
is developed in Go and produces Go files.

https://orcid.org/0000-0002-3263-7669
https://orcid.org/0000-0001-9013-4413
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and fmt.Println function are complex and are several

hundred lines of code12.

Discussion. Black-boxes address the state space ex-

plosion problem by fusing multiple transitions (here,

external library function calls) into a single one. Thus,

black-boxes assume the correctness of these external

functions calls. The verification of these functions is

then delegated to the writer of the external library who

can opt to use testing or model-checking. Consequently,

the developer can only focus on verifying its own code

and on providing a high quality software. This strategy

follows the idea of Godefroid [22] who states that some

part of the software can be checked by model-checking

while some part can be checked by testing. This strat-

egy is interesting since it can progressively be integrated

into all existing project in order to increase the quality

of the project.

Remark on Go2Pins limitations. Like many model-

checking approaches (ATL+ for instance that distin-

guish programs and instances) Go2Pins is currently lim-

ited to Integer variables, and compositions (structures)

of Integer variables. Nonetheless black-box transitions

can check arbitrary complex code (for instancemath.Sqrt

or fmt.Println. Consequently, Go2Pins restrictions only

apply to user code and not to imported code.

Blackbox and LTL verification. One drawback of

abstraction methods (such as Partial Order Reductions)

is the compatibility with the LTL Next operator. Since

blackbox transitions collapse successive transitions into

one based only on the observed atomic propositions,

the use of the Next operator is possible without alter-

ing the verification results. In other word this technique

only removes the noise from the verification procedure.

A word on side effects. Black-box transitions are not

limited to pure functions and also work with functions

containing side effects. For instance, call to fmt.Println

is fully supported. The only drawback of our method

is that we will observe the result of calling fmt.Println

during the verification procedure.

4.2 User-defined black-box transitions

It is legitimate to ask whether the black-box transition

technique could also be applied to user code. A closer

look to Listing 9 shows that the foo function could also

be black-boxed if we are only interested in the value of

the variable a.

12 The interested reader may look the definition of:
https://golang.org/src/fmt/print.go
https://golang.org/src/math/sqrt.go

Go2Pins can automatically detect such functions.

The computation of functions that can be black-boxed

is more complex than we realize at first glance. A func-

tion can only be black-boxed if it respects the following

rules:

1. None of its variables is referred to during the verifi-

cation process

2. It only calls functions that can be black-boxed

3. It does not manipulate global variables

A more precise definition could be stated but would

require to compute all the possible executions paths.

Since this may be costly we opted for this conservative

approximation which is enough in most cases, and can

be easily computed.

Once all black-boxed functions are detected, Go2Pins

removes them from the original input and puts them

into a dedicated package. By achieving this, Go2Pins is

back to the situation described in the previous section.

Thus, user defined functions can now be black-boxed.

With this approach the state space of the program in

Listing 9 can be reduced from 12 states to 9 states (25%

reduction).

Hence, with this approach, an automatic abstrac-

tion, restricted to only behavior mandatory for the ver-

ification, is built.

Supporting depth-1 functions using global vari-

ables. There are some situations where the aforemen-

tioned rule (3) is too restrictive (more details in Sec-

tion 7). Consider for example a simple function f that

modifies a global variable v. Let us now suppose that

we want f to be black-boxed. A simple rewriting sys-

tem can be used to catch this situation. The function f

is moved in the blackbox package and rewritten to ac-

cept one more argument: a reference to the actual PINS

vector. Then every access to global variables is modified

to reference the correct slot in the PINS vector. This

technique works well but has a severe limitation13: we

cannot have a black-box function g that will call f . In

other words, g will never be considered as black-box.

This is too restrictive since some part of g could be

nonetheless abstracted away: e.g. all lines that are not

required for the computation of f . Future work aims to

investigate whether a solution to this problem exist.

5 PSLRec: Sugaring PSL for Recursive

Programs

13 Another restriction concern the use of the LTL Next op-
erator. Indeed, if the blackboxed function has multiple mod-
ification of one variable, only the later one will be visible.

https://golang.org/src/fmt/print.go
https://golang.org/src/math/sqrt.go
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Go2Pins handles recursion by unrolling k times the

recursive functions (with k fixed by the user). This un-

rolling produces, for each step of the recursion, new

functions, with new names. Thus, it can be seen as an

explicit representation of the recursive stack. Such un-

rolling with depth 2 is detailled in Listing 10 and 11. A

closer look to function facto 2 reveals that we opted to

raise an exception when the maximum depth is reached.

To achieve that, we keep track of the level of recursion

and replace all recursive calls by calls to panic. The

only problem with this translation is from the user point

of view: the variable facto.n no longer exists since it has

been replaced by multiple factoi.n variables, with i the

level of recursion. Thus, during the verification process,

the user can only check properties involving factoi.n

and not facto.n.

To ease this manipulation, we propose to sugar PSL,

an industrial Property Specification Language [11] and

a superset of LTL syntax. We opted for PSL since Go2Pins

targetsindustrial settings14. We sugar PSL with two

new operators any and all. We refer this new ver-

sion of PSL: PSLRec. It aims to translate automati-

cally atomic propositions expressed on the (recursive)

source code into their substituted names. For instance,

the LTL property F any(”facto.n == 0”) would be

translated into F (”facto1.n == 0” || ”facto2.n == 0”).

The PSL property {all(”facto.a == 1”)[*]}[]->F
any(”facto.n == 0”) would be translated into {(”facto1.a
14 Note that only the Spot backend supports PSL

func facto(n int) int {
if n == 0 {

return 1
} else {

return n * facto(n-1)
}

}

Listing 10 Factorial function

func facto_1(n int) int {
if n == 0 {

return 1
} else {

return n * facto_2(n-1)
}

}
func facto_2(n int) int {
if n == 0 {

return 1
} else {

panic("Max Depth Reached")
}

}

Listing 11 Two level unrolling of the facto function of List-
ing 10

== 1” && ”facto2.a == 1”)[*]}[]->F(”facto1.n ==

0” || ”facto2.n == 0”) With this translation, the se-

mantics of the original formulae is preserved (i.e., for

the PSL formula, F any(”facto.n == 0”) must be true

every time the regular expression all(”facto.a == 1”)⋆

is matched.).

Let k be the maximum recursion depth. Let a ∈ AP

be an atomic proposition. For i ∈ [1..k], let us denote

by ai the occurrence of a in the ith step of the recur-

sion. Let σ be an infinite sequence and σ(0) be the first

element of this sequence. Let us introduce two new op-

erators such that: σ |= any(a) iff ∃i ∈ [1..k], ai ∈ σ(0)

and σ |= all(a) iff ∀i ∈ [1..k], ai ∈ σ(0).

Remark. We strongly believe that the PSLRec formal-

ism can also be used outside Go2Pins. Consequently, we

implement a tool called pslrec that takes as an input:

the PSL formula and a JSON describing the recursion

depth for each variables. This tool is distributed as a

part of Go2Pins but we keep it external in order to

make it reusable in another context.

6 Using Go2Pins on Go programs

This section provides the necessary commands to run

and play with Go2Pins15. To download Go2Pins you

can either fetch it and compile it from the git repository

using:

git clone https://gitlab.lre.epita.fr/spot/go2pins.git

&& make

or you can use the package manager of Go using the fol-

lowing command. In this case, the tool will be installed

directly in your $GOBIN directory.

go get gitlab.lre.epita.fr/spot/go2pins

Notice that Go2Pins has two dependencies you have

to install by your own: LTSmin16 and Spot17. Once this

has been done, you can run Go2Pins on the example of

Listing 9 using go2pins -f listing.1.7.go

The previous command produced an out directory con-

taining the go2pins-mc binary. This binary can then

be used for model-checking the original program.

- ./out/go2pins-mc -list-variables lists all variables

you can use for LTL model-checking. One can ob-

serve that each variable is prefixed by the package

name and the function name.

- ./out/go2pins-mc -kripke-size computes the state

space of the program. You should obtain 12 states

visited as aforementioned.

15 Under GPL (v3), available at https://gitlab.lre.
epita.fr/spot/go2pins
16 https://ltsmin.utwente.nl
17 https://gitlab.lre.epita.fr/spot/spot

https://orcid.org/0000-0002-3263-7669
https://orcid.org/0000-0001-9013-4413
https://gitlab.lre.epita.fr/spot/go2pins
https://gitlab.lre.epita.fr/spot/go2pins
https://ltsmin.utwente.nl
https://gitlab.lre.epita.fr/spot/spot


Go2Pins: a framework for the LTL verification of Go programs (Extended Version) 11

- ./out/go2pins-mc -ltl ’FG ”main main a > 1”’

-backend spot -nb-threads 1 runs the command of

Section 4 with one thread using the Spot backend.

You should observe an extra display 18, that corre-

sponds to black-boxing fmt.Println .

Finally, if you want to blackbox the foo function, you

have to regenerate the out directory and rerun the ver-

ification process. Go2Pins offers a shortcut to perform

both actions simultaneously

go2pins -f -blackbox-fn=”auto”

listing.1.7.go ’FG ”main main a > 1”’

Discussion. Go2Pins progressively desugar the orig-

inal program into a program that respects the PINS

interface. With this workflow it could be sometimes

hard to follow the various transformations and their

side effects in the original program. Consequently, we

added an option -debug that prints out the result of

each translation into a dedicated file (located into the

out/debug directory). This option ease the verification

and the debug of each pass.

Notice that our primary goal was to build a veri-

fication tool that compares the results of the original

program with the results of the transformed program

after each step of the translation 18. This approach

works well but triggers ”declared but not used” er-

rors when trying to compile the transformed programs.

Indeed, our translations introduce extra-variables that

are deservedly considered by the Go compiler, as ”un-

used variables”. Since the Go language specification for-

bids this, there is no flag for compiling without this

error..Consequently, if you want to check each trans-

formation, you have to compile your own Go compiler

and get rid of this message by commenting lines 67-69

of [13].

7 Benchmark

7.1 Evaluation of Go2Pins

In order to test19 Go2Pins we opted to translate industrial-

inspired problems coming from the RERS challenge [38].

These reactive systems are represented through huge

files written in C. To test the whole workflow of our

approach, we first use C4Go [17] to translate them into

Go, then apply the Go2Pins workflow.

18 This approach is valid at least until we reach the core-
translation
19 Details of our benchmark and how to reproduce it
are available at https://www.lre.epita.fr/˜renault/
benchs/SPIN-2021/results.html
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The RERS challenge comes with a set of LTL for-

mulae. Consequently, our benchmark is composed of

41 models (1 909 345 LOC) and 5 064 formulae. Among

these 5 064 formulae 35% are verified and 65% are vi-

olated. Regarding the hierarchy of Manna and Pnueli

[34], our benchmark is split in 25% pure guarantee, 44%

pure safety, 2% pure obligation, 12% pure persistence,

12% pure recurrence, and 5% pure reactivity. Finally all

experiments were run with a 4 minutes timeout and 200

GB memory limitation on a 24 cores Intel(R) Xeon(R)

CPUX7460@ 2.66GHz with 256GB of RAM.

In order to handle this benchmark, Go2Pins must

be able to simulate an environment. Indeed, the RERS

challenge simulates reactive systems where the environ-

ment (a non controllable component) impacts the re-

sults of the verification process. In order to model this

non controllable component, RERS opted to read ar-

bitrary finite sequence of bytes (characters) from the

standart input (over a specified alphabet). To ensure

the validity of the system over all traces, we have to

check each individual inputs. One option would be to

provide a trace generator that generates all finite se-

quence from a given alphabet. This solution is not sat-

isfactory since it would require user action to plug the

two tools together. A closer look to the structure of

RERS file show that we can avoid any user actions. In-

deed, he alphabet is specified directly in the file and the

environment is simulated by a specific statement (that

read standard input). Therefore we adapted Go2Pins

to track this specific statement: every time this state-

ment is triggered not only one but many successors are

produced, one per potential value of the environment

(i.e. the alphabet).

https://www.lre.epita.fr/~renault/benchs/SPIN-2021/results.html
https://www.lre.epita.fr/~renault/benchs/SPIN-2021/results.html
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Fig. 5 Time comparison in log10 scale for each backend (Spot and LTSmin), with or without black-boxes. The
dark line corresponds to identity while gray lines show the 10 factor speedup/slowdown. Dashed lines represent
the 4 minutes timeout.

Figure 4 focuses first on the scalability of Go2Pins.

This figure details the time required by Go2Pins to

translate and compile the files of the benchmark. For

each pair model-formula a dot is displayed while lines

join the mean of each series 20. Two approaches are de-

picted: with or without the use of the black-boxes tech-

nique. Surprisingly, we can first observe that the use

of black-boxes also reduces the processing time. Since

our approach decomposes each statement in atomic op-

erations, the use of black-box will produce smaller files

that are easily processed by the go compiler. Thus, with

the black-box technique, our tool process around 5000

line per second. A closer look to these results reveals

that Go2Pins uses 60% of this time while the Go com-

piler uses 40% of it. Consequently, there is room for

improvement in our tool. Finally one can observe huge

variation for some models. These models have a low

number of lines of code, but each line has complex oper-

ation: Go2Pins spends time to reduce these operations

to atomic operations.

20 In our benchmarks multiples programs have the same
number of line of code (LOC). A serie is defined as all com-
putations, i.e. one per formula, w.r.t. a specific LOC.

Figure 5 displays the time required to process the

whole benchmark by both Spot and LTSmin. In (a) and

(b) it can be observed that the use of black-boxes sig-

nificantly improves both Spot and LTSmin. Figure 5

(c) and (d) display the comparison between Spot and

LTSmin on this benchmark. Without black-boxes, Spot

outperform to find counterexamples while LTSmin seems

better to find empty products (the hardest ones). This

difference could come either from the type of Büchi au-

tomaton used (which differ between Spot and LTSmin

default configurations) or from the default emptiness

check algorithm used [5, 12]. Further investigation could

broaden the study of [4]. Finally, Figure 5 (d) shows

that the use of black-boxes helps Spot to resolve empty

products.

Figure 6 (a) and (b) display the number of states

and the number of transitions with or without black-

boxes when using Spot. Figure 6 (c) and (d) depict the

same information for LTSmin. In explicit model check-

ing these metrics are important: the runtime is pro-

portional to the number of transitions explored while

the memory consumption is proportional to the num-

ber of states. For both Spot and LTSmin, the number

https://orcid.org/0000-0002-3263-7669
https://orcid.org/0000-0001-9013-4413
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Fig. 6 States and transitions (with and without black-boxes) comparison for both Spot and LTSmin. The dark
line corresponds to identity while gray lines show the 10 factor speedup/slowdown.

of states and transitions is divided by 10 to 100 when

using black-boxes.

In conclusion, the black-box technique helps to re-

duce both preprocessing and verification runtime.

Validation. We also opted to test our approach using

the RERS benchmark in order to ensure correctness of

our implementation. Indeed this benchmark fully speci-

fies 10 models through exactly 964 LTL formulae. These

pairs (models, formulae) describe all lines that are (or

not) reachable in the input file. In addition to the tests

developed during the conception of our tool, these spe-

cific models confirm the validity of our workflow. One

should note that most of these files are unprocessable

within the 4 minutes timeout restriction. For black-box

transitions, we compare all obtained results to the 5 064

original results. Also note that we plan to translate the

BEEM database, used by Spin and DiVinE2.4 in order

to increase the confidence in our tool21.

21 We also plan to translate the Promela database http:
//www.albertolluch.com/research/promelamodels
to Go in order to compare with other verification tools

7.2 Evaluation of PSLRec

Since PSLRec could be used in multiple contexts, this

section aims at evaluating the impact of PSLRec desug-

aring on the translation time of LTL22 formulas to Büchi

automata. In order to test it over an extensive bench-

mark, we opted to use LTL formulas extracted from

the RERS benchmark, and modified them by sugar-

ing arbitrary atomic proposition with the all opera-

tor. Any atomic proposition sugared with the newly

introduced any or all operators will be replaced with

k equivalent atomic propositions to support verifica-

tion of a recursion of depth k. This can greatly in-

crease the complexity of the translation of the formula

to a Büchi automaton. Figure 7 shows a comparison of

the translation time between Spot and LTL2BA (used

by default for the LTSmin backend). Spot shows over-

all better performance, especially when increasing the

depth of the recursion (from 5 to 30). Additionally, we

measured the size of the automata produced by both

translations. Spot seems to consistently produce au-

22 Although PSLRec itself supports PSL syntax, only pure
LTL formulas were used for this evaluation since LTSMin’s
default translation backend only supports LTL syntax.

http://www.albertolluch.com/research/promelamodels
http://www.albertolluch.com/research/promelamodels
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challenge and modified by PSLRec. Dashed lines represent
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tomata with fewer states. Note that these experiments

translates LTL formulae into Büchi automata, but Spot

could produce smaller automata (transition-based gen-

eralized Büchi automta). When using Go2Pins, we there-

fore advise either to use the Spot backend or to use Spot

as a translation tool for the LTSmin backend (when ver-

ifying programs that make use of recursion).

8 Related Work

The development of Go2Pins has been motivated by

several empirical studies performed on the Go language

[37, 7, 39]. Ray et al. [37] study the relation between

types of bugs and multiple programming languages. Dil-

ley and Lange [7] analyzed 865 Go projects in order to

detect how channels are used in large Go projects. Tu

et al. [39] study 171 real-world concurrency bugs in Go.

To our knowledge, the LTL-verification of full and

unmodified Go programs has never been studied. Many

studies [33, 31, 30, 35, 8] focus on a static analysis of

operations on channels. Liu et al. [33] developed a tool

that detect statically patterns of bugs and fix them ac-

cording to some strategies. The other approaches [31,

30, 35, 8] focus on extracting channels operations. This

extraction is then used to to build models that are

then verified for correctness. Between SPIN’21 (the first

publication related to Go2Pins) and this paper, several

studies focused on the verification of Go program. Dil-

ley and Lange [9] proposed an elegant approach (and

an associated tool called Gomela) that extract opera-

tions on channel to build a promela model. This model

is then checked using the SPIN model checker. Focusing

on the channels operations is interesting since it build

an abstraction but has two main problems: false posi-

tives/negatives can be raised, and not all LTL proper-

ties can be expressed on the programs since some vari-

ables are abstracted away. Another, not yet published,

work has been made by Zhong et al. [44]. Their tool

to identify concurrency bugs in Go applications via dy-

namic binary analysis. In other words, their Bingo tool

activates tracepoints on the binary to be able to detect

bugs. Nonetheless, the source code is not yet available

and therefore, we were not able to see if their technique

could be compatible with some LTL verification. All

the aforementioned studies mainly focuses on concur-

rency problem by checking data-races, communication

patterns or deadlocks. Focusing only on channels opera-

tion helps to build small models that are processable by

verification tools. In this paper we developed a broader

approach since (1) we are able to check all LTL prop-

erties, (2) we are not restricted to channels operations

and (3) we developed a the black-box technique that

helps to fight combinatorial explosion without restrict-

ing ourself to only channels communications.

Another approach [6] aims to execute formal models

by converting Uppaal programs into Go. Similarly Giunti

[21] proposed to map pi-calculus specifications of static

channels into Go executable programs. Our workflow

avoids such transformations, since programs can be ex-

ecuted and verified as-is.

Handling the standard library is a real problem for

software verification tools. JPF [41] requires providing

the source code of the standard library and relies on a

Virtual Machine. The idea of black-box transitions, that

naturally handle the standard library, has never been

proposed to our knowledge. The closest idea is the one

of Spin [25] that is able to execute multiple instruc-

tions atomically (see atomics, d steps and c code

keywords). Since this approach is not automatic and re-

lies on a model written in Promela, it is not well suited

for verifying large software systems. One should note

that approaches based on the LLVM bytecode also ex-

ist. The first one [43] links with Spin for handling con-

currency while the second one [1] requires a program ex-

pressed in C++. In contrast to our approach, no model

can be extracted.

9 Toward the Verification of Real-World

Programs

In this section, we test Go2Pins over some buggy

programs adapted from real world applications. These

programs come from the GoBench benchmark [42] that

https://orcid.org/0000-0002-3263-7669
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Listing 12 Negative counter bug adapted from [14]

1 package main
2 import "sync"
3
4 var wg sync.WaitGroup
5 var listSize = 5
6 var someList []int = []int{-2, -5, -3, -1, 0}
7
8 func process() {
9 // code omitted working with someList

10 wg.Done()
11 }
12
13 func main() {
14 // Fixup error by removing line 19 and
15 // uncommenting the following line
16 // wg.Add(listSize)
17 for i := 0; i < listSize; i++ {
18 go process()
19 wg.Add(1) // Error
20 }
21 wg.Wait()
22 }

list a variety of concurrency issues detected either in

popular open source applications or in kernel programs.

We also compare Go2Pins to Gomela on these pro-

grams.

9.1 Kubernetes Negative Counter

Listing 12 details a typical safety bug that was found

in kubernetes [14]. This program uses WaitGroups that

are popular shared memory structures dedicated for

synchronizing multiple goroutines. WaitGroups can be

used through three primitives: Add(n) that declares (or

augments) the number of goroutines to wait, Done that

specifies that some goroutine has finished its work, and

Wait that is blocking until the number of gouroutines

to wait has not been reached. Note that Waitgroups

trigger a runtime error if the counter they handled be-

comes negative.

In this example, the main thread spawns several

goroutines (line 18) and invokes wg.Add(1) just after.

Then, each goroutine performs computations on the list

before invoking wg.Done() (line 10). The problem in

this snippet of code comes from the line 19. In an exe-

cution where the first worker goroutine finishes its job

quickly, it may decrement wg before it is incremented,

and thus trigger a run-time error.

In order to verify this program Go2Pins must be

adapted to support WaitGroups. Thanks to the modu-

lar architecture of Go2Pins, we provide this support by

writing a single transformation step of only 150 (doc-

umented) lines 23 . This demonstrates how simple the

extension of Go2Pins can be. The transformation step is

straightforward: all WaitGroup variables are converted

into an integer variable, every Add(n) invocations just

increases the variable by n, every Done decreases the

variable by 1, and every Wait operation is translated

in a (while-based) spin loop.

Then, checking that a given WaitGroup wg will not

trigger an error can be done by checking the LTL for-

mula ’G ”wg ≥ 0”’. Checking this formula against List-

ing 12, raises a counterexample in less than 40 ms (for a

3 seconds compilation time). Therefore this Kubernetes

bug can be detected by Go2Pins.

By comparison checking this program 24 with the

state-of-the-art Gomela tool is less straightforward. In-

deed Gomela computes different values (by default 3)

for the listSize in order to build various abstractions.

Then each abstraction is verified, each one taking ap-

proximatively 1.8 seconds. In order to be more confident

in the results, the user may specify the range of values

for listSize. All abstractions will report the bug, except

one, when listSize equals to zero. In this case, no gor-

outine is spawned, and therefore no bug is found. Even

if this information is correct, it will never occurs in the

program to check. Thus the user may be confused by

this extra-information. Also note that applying the fix

of line 14-16 for Listing 12 raises false positives with

Gomela while Go2Pins outputs directly the correct an-

swer (by exploring a state-space of 682 state and 2746

transitions in 20 ms).

9.2 Trillian Blocking Bug

Listing 13 presents an adapted version of a bug

found in the Trillian [15] project, a verifiable data store

developed at Google.

At lines 23 to 25, this program starts by allocat-

ing one token per available CPU. Each token is then

stored in the limitCh buffered channel. By opposition

to unbuffered channels described Section 3.3, buffered

channels are also blocking channels but contains a fixed

size buffer that can be filled before becoming blocking.

For instance, such a buffer of size 2 will authorize two

insertions without removal before becoming blocking

for a new insertion.

Once all tokens have been inserted in limitCh, the

program spawns goroutines, according to the size of the

verifiable data store. Therefore, each goroutine executes

23 This transformation can be found at https:
//gitlab.lre.epita.fr/spot/go2pins/-/blob/
master/transform/waitgroup.go
24 An adaptation of this program w.r.t the constraints of
Gomela

https://gitlab.lre.epita.fr/spot/go2pins/-/blob/master/transform/waitgroup.go
https://gitlab.lre.epita.fr/spot/go2pins/-/blob/master/transform/waitgroup.go
https://gitlab.lre.epita.fr/spot/go2pins/-/blob/master/transform/waitgroup.go
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Listing 13 Blocking bug adapted from [15]

1 package main
2
3 var cpus int = 2
4 var store_size int = 3
5 var n int = 4
6
7 var limitCh chan int = make(chan int, cpus)
8 var ch chan int = make(chan int, n)
9

10 func wait_and_close() int {
11 exit_code := 1
12 // code omitted, close channel, etc.
13 return exit_code // SUCCESS
14 }
15
16 func process() {
17 a := <-limitCh // get a token
18 s := 42 // complex computation ommitted here
19 ch<-s
20 limitCh <- a // return token
21 }
22
23 func main() {
24 for i := 0; i < cpus; i++ {
25 limitCh <- 1
26 }
27
28 for i := 0; i < store_size; i++ {
29 go process()
30 }
31
32 for i := 0; i < n; i++ {
33 tmp := <- ch
34 // code omitted
35 }
36
37 result := wait_and_close()
38 }

the process function that (1) retrieves a token, (2) per-

forms some computation, (3) send the results of this

computation into the ch buffered channel, and (4) re-

lease the token.

Finally, the main thread (lines 31 to 34) aggregates

the values computed by the various goroutines and fi-

nalizes the program (line 36).

This program has a subtle bug that originates in

lines 4 and 5. Indeed, this program works perfectly

when store size and n have the same values or when

store size is greater than n25. The blocking bug comes

when n is greater than store size. In this particular case

lines 32 to 35 become blocking as soon as store size el-

ements have been been retrieved from ch. Indeed, since

ch will contain at most store size elements (line 19),

line 33 becomes blocking after that.

25 This is handled by some omitted code line 34

In order to verify this program Go2Pins must be

adapted to support both spawning loops and buffered

channels. Spawning loops, i.e. loops whose purpose is

only to launch goroutines (see lines 28 to 30) can be

easily supported. Indeed, fixed size loops can be un-

rolled by duplicating the content of the loop. This sim-

ple transformation can be done with only 200 lines of

code. The support of buffered channels is more com-

plex. While unbuffered channels act as a rendez-vous

between two goroutines, buffered channels must handle

all the possible interleaving (w.r.t. the size of the chan-

nel) before becoming blocking. Thus, the representation

of the channel requires more metadata. The structure

of this representation is depicted below

α0 ... αn︸ ︷︷ ︸
buffer
for the
channel

β0 γ0︸ ︷︷ ︸
data for

1st gorout.

... ...︸ ︷︷ ︸
...

βi γi︸ ︷︷ ︸
data for

ith gorout.

n︸︷︷︸
Nb
elt

where α0 to αn represents the buffer associated to

the channel, (βj , γj) represents metadata of goroutine j

(information about the operation, and about the value),

and n represents the number of elements in the buffer.

With this information, the scheduler of Listing 8 can be

adapted for generating all possibles permutations. For

instance if one goroutine wants to write 42, while the

second wants to write 51 and the third one 69, then our

scheduler will produce 6 possibles orders.

With these two modifications, Go2Pins is now ready

to verify the behavior of the program depicted in List-

ing 13. Checking that no goroutine is blocked forever

can be done by checking the LTL property ”’GF ”result

== 51”’, i.e. the main thread always finishes. Checking

this formula raises a counterexample in immediately;

therefore this Trillian bug can be detected by Go2Pins.

Similarly to the Kubernetes bug, Gomela is also able

to detect this deadlock but needs to compute different

values for cpus, store size, and n. Each of these verifi-

cations takes 1.6 seconds, leading to a total verification

of almost 1 minute (to compare with the 50 ms needed

by spot in addition to the 3.5 compilation time).

Technical issue. In the original snippet of code, the

variable cpus (line 3) is initialized to runtime.NumCPU().

Thanks to the blackboxes, Go2Pins could work with

this definition. Nonetheless, this solution is not satisfac-

tory since the results of the verification procedure may

depend on the underlying architecture. For instance on

a two-cores architecture, verifying that FG ”cpus ==

2”’ would return true while checking the same property

on a four-cores architecture would return false.

https://orcid.org/0000-0002-3263-7669
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One potential solution would be to follow a strategy

similar to the one of Gomela, i.e. to pick random values

for cpus an to verify all the properties for each random

value. This is not ideal since it may raise false positives.

Another solution could be to follow the idea used

to handle the RERS benchmark. In other words, con-

sider runtime.NumCPU() as a special case that does

not produce a single value but a set of values and there-

fore produce a set of successors. Even if this idea seems

attractive, it will have a significant impact on the size

of the state space, and does not solve the problem: if

runtime.NumCPU() returns a set with all values up to

16, an architecture of 18 cores may lead to similar prob-

lems. Finding an adequate solution is left for a future

work.

Discussion. Through these two industrial examples, it

seems that Gomela and Go2Pins are complementary.

On one hand, the abstractions provided by Gomela

seems to be more adapted to find potential bugs in

large code bases, but could raise false positives. On the

other hand, Go2Pins provides exact results but needs

to be adapted to handle new concepts. Our feeling is

that checking correctness of Go programs could be done

in two steps: (1) use Gomela to detect potential bug,

(2) then use Go2Pins to rule out false positive. Indeed,

since Gomela abstraction are very relaxed, one can effi-

ciently detect false positives. Then, Go2Pins can check

the veracity of the previous verdict by achieving an ex-

haustive verification.

10 Conclusion

This paper introduces Go2Pins, the first tool developed

for LTL model-checking over Go programs. It relies

on the idea that the Go language is a good candidate

for specifying, verifying and building asynchronous sys-

tems. Go2Pins uses the PINS interface to link with an

ecosystem of model-checkers and model-checking tech-

niques. This paper also introduces black-box transi-

tions to tackle the combinatorial explosion problem.

Our benchmark has proven the efficiency of this tech-

nique by reducing by more than a factor the size of the

state-spaces. Moreover, this technique provides an easy

way to support features that are not yet supported by

Go2Pins.

Future work aims to support more Go features in

order to analyze the structure of the state space of

industrial problems (following up the static empirical

study of Dilley and Lange [7]). To handle industrial

project we would like to support Partial Order Re-

ductions (POR) [40, 36, 29]. Currently only LTSmin

supports POR through the use of dependencies ma-

trixes. We plan to compute these matrixes directly into

Go2Pins and to integrate POR into Spot. We also would

to like to study the relation between black-boxes and

POR.

Additionally we would like to go deeper in the devel-

opment of the black-box technique. For huge functions

that cannot be black-boxed we could nonetheless find

sequences of instructions that could be fused. Moreover

we would like to investigate whether the black-box tech-

nique could be generalized to handle any-depth func-

tions with global side-effects.

Finally, our tool only performs verification without

fairness since both LTSmin and Spot require fairness to

be expressed in the LTL-formula. Nonetheless, express-

ing fairness directly in Go2Pins could help to reduce

state-space size. In order to achieved that, we would

like first perform a study of source code of the go sched-

uler, then we would like to see if we can adapt their code

directly inside of Go2Pins in order to avoid adding com-

plexity in the LTL formulae.
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