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Abstract. We introduce a new algorithm that takes a Transition-based
Emerson-Lei Automaton (TELA), that is, an ω-automaton whose accep-
tance condition is an arbitrary Boolean formula on sets of transitions to
be seen infinitely or finitely often, and converts it into a Transition-based
Parity Automaton (TPA). To reduce the size of the output TPA, the
algorithm combines and optimizes two procedures based on a latest ap-
pearance record principle, and introduces a partial degeneralization. Our
motivation is to use this algorithm to improve our LTL synthesis tool,
where producing deterministic parity automata is an intermediate step.

1 Introduction

Let us consider the transformation of ω-automata with arbitrary Emerson-Lei
acceptance into ω-automata with parity acceptance. Our inputs are Transition-
based Emerson-Lei Automata (TELA), i.e., automata whose edges are labeled
with integer marks like 0 , 1 , 2 , ... and whose acceptance condition is a positive
Boolean formula over terms such as Fin( 1 ) or Inf( 2 ) that specifies which marks
should be seen infinitely or finitely often in accepting runs. Our algorithm pro-
cesses a TELA with any such acceptance condition, and outputs a TELA whose
acceptance can be interpreted as a parity max odd (resp. even) condition, i.e.,
the largest mark seen infinitely often along a run has to be odd (resp. even).
Figures 1 and 3 on page 9 show an example of input and output.

While non-deterministic Büchi automata are the simplest ω-automata able to
represent all ω-regular languages, deterministic Büchi automata are less expres-
sive; as a consequence, applications that require determinism usually switch to
more complex acceptance conditions like Rabin, Streett, or parity. Parity can be
regarded as the simplest of the three, in the sense that any parity automaton can
be converted into a Rabin or a Streett automaton without changing its transition
structure. Parity acceptance is especially popular among game solvers, as parity
games can be solved with memoryless strategies and arise in many problems.

Our motivation comes from one such problem: reactive synthesis from LTL
specifications, i.e., building an I/O transducer whose input and output signals
satisfy an LTL specification ϕ [4]. The high-level approach taken by our ltlsynt
tool [20], or even by the SyntComp’19 winner Strix [18], is to transform the LTL
formula into a deterministic transition-based parity automaton (DTPA), inter-
pret the DTPA as a parity game by splitting the alphabet on inputs and outputs,
then solve the game and use any winning strategy to synthesize a transducer.
Let us zoom on the first step: transforming an LTL formula into a DTPA.
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One of the many methods to transform an LTL formula into a DTPA is to first
convert the LTL formula into a non-deterministic Büchi automaton, and then
determinize this automaton using some variant of Safra’s construction to obtain
a DTPA [22, 23]. This is the current approach of ltlsynt [20]. However, since
the introduction of the HOA format [2] allowing the representation of TELA,
we have seen the development of several tools for converting LTL formulas into
TELA: for instance delag [21], ltl2da and ltl2na (all three part of newer
versions of Owl [13]), ltl3tela [19], or Spot’s ltl2tgba -G (see Section 5),
all trying to reduce the size of their output by using acceptance formulas more
closely related to the input LTL formulas. An alternative way to transform an
LTL formula into a DTPA is therefore to first transform the LTL formula into a
deterministic TELA, and then “paritize” the result. This paper focuses on such
a paritization procedure. Note that our construction preserves the deterministic
nature of its input but also works on non-deterministic automata.

Our procedure adapts for TELA, optimizes, and combines a few existing
transformation procedures. For instance there exists a procedure called SAR
(state appearance record) [16, 17] that converts a state-based Muller automaton
into a state-based parity automaton, and a similar but more specialized proce-
dure called IAR (index appearance record) [16, 17] for transforming a Rabin or
Streett automaton into a parity automaton. These two procedures are based on
a latest appearance record (LAR), i.e., a structure that keeps track of the latest
occurring state or the latest occurring unsatisfied Rabin/Streett pair (the term
LAR is sometimes used to describe SAR [10]). We describe the adaptation of
these two procedures in Section 3. In the context of a TELA, we introduce a
simplified SAR called CAR (color appearance record) that only tracks colors, and
the IAR algorithm has already been adapted by Křetínský et al. [15]. A third
transformation, also described in Section 3, can be used as a preprocessing before
the previous procedures: this is a partial degeneralization, i.e. an extension of the
classical degeneralization procedure [11, 1] that will replace any sub-formula of
the form

∧
i Inf(mi) (resp.

∨
i Fin(mi)) by a single Inf(mj) (resp. Fin(mj)) in the

acceptance condition.
In Section 4 we present our “paritization” procedure that combines the above

procedures with some additional optimizations. Essentially the automaton is
processed one strongly-connected component (SCC) at a time, and for each
SCC the acceptance condition is simplified before choosing the most appropriate
transformation to parity.

This paritization procedure is implemented in Spot 2.9. In Section 5 we show
how the combination of all the improvements outperforms the straightforward
CAR algorithm in practice.

2 Transition-based Emerson-Lei Automata

Emerson-Lei Automata were defined [8] and named [24] in the 80s, and provide a
way to describe a Muller acceptance condition using a positive Boolean formula
over sets of states that must be visited finitely or infinitely often. Below we define
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the transition-based version of those automata, as used in the Hanoi Omega-
Automata Format [2]. Instead of working directly with sets of transitions, we
label transitions by multiple colored marks, as can be seen in Figures 1–3.

LetM = {0, . . . , n−1} be a finite set of n contiguous integers called the set of
marks or colors, from now on also writtenM = { 0 , 1 , . . .} in our examples. We
define the set C(M) of acceptance formulas according to the following grammar,
where m stands for any mark in M :

α ::= > | ⊥ | Inf(m) | Fin(m) | (α ∧ α) | (α ∨ α)

Acceptance formulas are interpreted over subsets of M . For N ⊆ M we define
the satisfaction relation N |= α according to the following semantics:

N |= > N |= Inf(m) iff m ∈ N N |= α1 ∧ α2 iff N |= α1 and N |= α2

N 6|= ⊥ N |= Fin(m) iff m /∈ N N |= α1 ∨ α2 iff N |= α1 or N |= α2

Intuitively, an Emerson-Lei automaton is an ω-automaton labeled by marks
and whose acceptance condition is expressed as a positive Boolean formula on
sets of marks that occur infinitely often or finitely often in a run. More formally:

Definition 1 (Transition-based Emerson-Lei Automata). A transition-
based Emerson-Lei automaton (TELA) is a tuple A = (Q,M,Σ, δ, q0, α) where
Q is a finite set of states, M is a finite set of marks, Σ is a finite input alphabet,
δ ⊆ Q×Σ × 2M ×Q is a finite set of transitions, q0 ∈ Q is an initial state, and
α ∈ C(M) is an acceptance formula.

Given a transition d = (q1, `, A, q2) ∈ δ, we write d = q1
`,A−−→ q2. A run r of A

is an infinite sequence of transitions r = (si
`i,Ai−−−→ s′i)i≥0 in δω such that s0 = q0

and ∀i ≥ 0, s′i = si+1. Since Q is finite, for any run r, there exists a position
jr ≥ 0 such that for each i ≥ jr, the transition si

`i,Ai−−−→ s′i occurs infinitely often
in r. Let Rep(r) =

⋃
i≥jr Ai be the set of colors repeated infinitely often in r.

A run r is accepting if Rep(r) |= α, and we then say that A accepts the word
(`i)i≥0 ∈ Σω. The language L (A) is the set of words accepted by A. Two TELA
are equivalent if they have the same language. By extension, the language of a
state q ∈ Q is the language of the automaton using q as initial state.

Example 1. In the automaton of Figure 1, the run r that repeats infinitely the
two transitions 0 12 4

3 has Rep(r) = { 2 , 3 , 4 }. Since Rep(r) satisfies
the acceptance condition (written below the automaton) r is an accepting run.

A TELA’s acceptance formula can be used to express many classical ω-
automata acceptance conditions, as shown in Table 1. Note that colors may ap-
pear more than once in most formulas; for instance (Fin( 0 )∧ Inf( 1 ))∨(Fin( 1 )∧
Inf( 0 )) is a Rabin acceptance formula.

The only unusual formulas of Table 1 are the Rabin-like and Streett-like con-
ditions. A Rabin-like formula

∨
i

(
Fin(m2i)∧Inf(m2i+1)

)
∨
∨
j Inf(mj)∨

∨
k Fin(mk)

can be converted into the Rabin formula
∨
i

(
Fin(m2i)∧ Inf(m2i+1)

)
∨
∨
j(Fin(a)∧
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Table 1. Shape of classical acceptance formulas. The variables m,m0,m1, . . . stand
for any acceptance marks in M = {0, 1, . . .} to allow multiple occurrences.

Büchi Inf(m)
generalized Büchi

∧
i Inf(mi)

co-Büchi Fin(m)
generalized co-Büchi

∨
i Fin(mi)

Rabin
∨

i (Fin(m2i) ∧ Inf(m2i+1))
Rabin-like

∨
i (Fin(m2i) ∧ Inf(m2i+1)) ∨

∨
j Inf(mj) ∨

∨
k Fin(mk)

Streett
∧

i (Inf(m2i) ∨ Fin(m2i+1))
Streett-like

∧
i (Inf(m2i) ∨ Fin(m2i+1)) ∧

∧
j Inf(mj) ∧

∧
k Fin(mk)

parity max evenCf. Appendix A Inf(2k) ∨ (Fin(2k − 1) ∧ (Inf(2k − 2) ∨ (Fin(2k − 3) ∧ . . .)))
parity max odd Inf(2k + 1) ∨ (Fin(2k) ∧ (Inf(2k − 1) ∨ (Fin(2k − 2) ∧ . . .)))

Inf(mj))∨
∨
k(Fin(mk)∧ Inf(b)) by introducing two new marks a and b such that

a occurs nowhere in the automaton and b occurs everywhere. Therefore, with-
out loss of generality, we may describe algorithms over Rabin automata, but in
practice we implement those over Rabin-like acceptance conditions.

When discussing Rabin acceptance, it is common to mention the number
of Rabin pairs, i.e., the number of disjuncts in the formula; we use the same
vocabulary for Rabin-like, even if some of the pairs only have one term. Dually,
the number of pairs in a Streett-like formula is the number of conjuncts.

Remark 1. Formula Fin( 0 ) ∧ Inf( 1 ) can be seen as Rabin with one pair, or a
Streett-like with two pairs. Similarly, a generalized Büchi is also Streett-like.

Remark 2. Any sub-formula of the form
∨
i Inf(mi) (resp.

∧
i Fin(mi)) can be

replaced by a single Inf(a) (resp. Fin(a)) by introducing a mark a on all transi-
tions where any mi occurred. Thus, any parity automaton can be rewritten as
Rabin-like or Streett-like without adding or removing any transition: to produce
a Rabin-like (resp. Streett-like) acceptance, rewrite the parity acceptance for-
mula in disjunctive normal form (resp. CNF) and then replace each term of the
form

∧
i Fin(mi) (resp.

∨
i Inf(mi)) by a single Fin (resp. Inf).

Definition 2 (Strongly Connected Component). Let us consider a TELA
A = (Q,M,Σ, δ, q0, α). A strongly connected component (SCC) is a non-empty
set of states S ⊆ Q such that any ordered pair of distinct states of S can be
connected by a sequence of transitions of δ. We note A|S = (S,M,Σ, δ′, q′0, α) a
sub-automaton induced by S, where δ′ = δ ∩ (S × Σ × 2M × S), and q′0 ∈ S is
an arbitrary state of S. An SCC S is said accepting if L (A|S) 6= ∅.

3 Specialized Transformations

We describe three algorithms that transform the acceptance condition of a
TELA. The first two output an equivalent TELA with parity acceptance: CAR
(Section 3.1) works for any input, while IAR (Section 3.2) is specialized for
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Rabin-like or Streett-like inputs. The third algorithm is a partial degeneraliza-
tion (Section 3.3): it takes an automaton with any acceptance formula α, and
produces an automaton where any generalized Büchi (resp. generalized co-Büchi)
subformula of α have been replaced by a Büchi (resp. co-Büchi) formula. Opti-
mizations common to these algorithms are listed in Section 3.4.

3.1 Color Appearance Record

Consider a set of marksM= {0, 1, . . ., n−1} and a TELAA = (Q,M,Σ, δ, q0, α).
Let Π(M) be the set of permutations of M . We can represent a permutation
σ ∈ Π(M) by a table 〈σ(0), σ(1), . . ., σ(n− 1)〉.

The Color Appearance Record (CAR) algorithm pairs such permutations of
colors with states of the input automaton in order to keep track of the history
of colors visited in the corresponding run of A, in the order they were last seen.
Output states are therefore elements of QCAR = Q×Π(M).

We update histories with a function U : Π(M)×M → Π(M)×2M , such that
U(σ, c) = (〈c, σ(0), σ(1), ..., σ(i − 1), σ(i + 1), ..., σ(n − 1)〉, {σ(0), σ(1), ..., σ(i)})
where i = σ−1(c) is the position of color c in σ. In other words, U(σ, c) moves c to
the front of σ by rotating the first i+1 elements: it returns the new permutation
and the set of rotated elements. This update function can be generalized to a
set of colors recursively as follows:

Ũ(σ, ∅) = (σ, ∅)
Ũ(σ, {c} ∪ C) = (ρ,R ∪ S) where (π,R) = Ũ(σ,C) and (ρ, S) = U(π, c)

That is to say, Ũ(σ,C) moves the colors in C to the front of σ and also returns
set of colors corresponding to the updated prefix. The order in which colors in C
are moved to the front of σ is unspecified and may affect the size of the output
automaton (see Section 3.4).

Let M ′ = {0, . . . , 2n + 1} be the output marks. We define the transition
relation δCAR ⊆ QCAR ×Σ × 2M

′ ×QCAR as follows:

δCAR=

{
(q, σ)

x,{c}−−−→(q′, π)

∣∣∣∣ q x,C−−→q′ ∈ δ, (π,R) = Ũ(σ,C), c = 2|R|+ [R 6|= α]

}
where [R 6|= α] is a shorthand for 0 if R |= α and for 1 if R 6|= α.

Theorem 1. For any TELA A = (Q,M,Σ, δ, q0, α) over the marksM = {0, . . .,
n − 1}, there exists an equivalent TELA A′ = (QCAR,M ′, Σ, δCAR, (q0, π0), α

′)
where α′ is a parity max even formula over 2n+1 colors. The initial permutation
can be any π0 ∈ Π(M).

The proof is similar to that of the state appearance record algorithm [16], but we
track colors instead of states. The intuition is that any cycle r′ of A′ corresponds
to a cycle r of A. If the union of the colors visited by r is R, then all the states
in r′ necessarily have all colors of R to the front of their history, there will be at
least one transition t of r′ for which the number of colors rotated by Ũ is |R|, and
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for all the other transitions this number will be lesser or equal. Therefore, the
color 2|R| + [R 6|= α] selected for this transition t will be the highest of Rep(r′)
and will cause r′ to be accepting iff r is accepting.

Note that this construction may produce |Q| × n! states in the worst case.

Example 2. The CAR arrow at the top-right of Figure 2 shows an application of
CAR on a small example. Let us ignore the fact that there is no initial state in
these “automata” and focus on how transitions of the output (above the arrow)
are built from the transitions of the input (below). Assuming we want to build
the successors of the output state (11, 〈0, 2, 1〉), we look for all successors of input
state 11. One option is 11 012 . We compute the history Ũ(〈0, 2, 1〉, { 2 }) of
the destination state by moving 2 to the front of the current history, yielding
〈2, 0, 1〉. The destination state is therefore (01, 〈2, 0, 1〉). Two colors R = { 0 , 2 }
have been moved in the history by this transition, and since R |= α the transi-
tions is labeled by color 2×|R|+0 = 4 . Another successor is the loop 11 0 . In
this case, color 0 , already at the front of the history, is moved onto itself, so the
output is a loop. Since R = { 0 } 6|= α, that loop is labeled by 2× |R|+ 1 = 3 .

3.2 Index Appearance Record

While CAR can be used to transform Rabin or Streett automata into parity
automata, there exists an algorithm more suitable for these subclasses of TELA.
Let A = (Q,M,Σ, δ, q0, α) be a TELA with a Rabin acceptance condition α =∨
i∈I (Fin(pi) ∧ Inf(ri)). We call (pi, ri) a Rabin pair, where pi is the prohibited

color, and ri the required color.
We define the set of index appearance records as the set Π(I) of permutations

of Rabin pair indices. The output states QIAR = Q × Π(I) are equipped with
such a record to track the history of indices of the Rabin pairs (pi, ri) in the
order the colors pi were last seen.

We update those IAR using a function U : Π(I) × I → Π(I), such that
U(σ, i) = 〈i, σ(0), σ(1), . . . , σ(j− 1), σ(j+1), . . . , σ(|I|− 1)〉 where j = σ−1(i) is
the position of the index i in σ. In other words, U(σ, i) moves i to the front of σ
by rotating the first j + 1 elements. This update function can be generalized to
a set of indices recursively with Ũ(σ, ∅) = σ and Ũ(σ, {i} ∪ I) = Ũ(Ũ(σ, i), I).

When processing a transition labeled by colors C ⊆ M , we need to update
the history for all indices P (C) = {i ∈ I | pi ∈ C} of a prohibited color.

This construction builds an automaton with parity max odd acceptance over
the colorM ′ = {0, 1, . . . , |I|+2} . The transitions δIAR ⊆ QIAR×Σ×2M ′×QIAR

of the output automaton can be defined as:

δIAR =

{
(q, σ)

x,{c}−−−→ (q′, π)

∣∣∣∣∣ q x,C−−→ q′ ∈ δ, π = Ũ(σ, P (C)), m =M(σ,C),

c = 2m+ 1 + [m ≥ 0 ∧ pσ(m) ∈ C]

}
where M(σ,C) = max

(
{− 1

2} ∪
{
i ∈ {0, 1, |I| − 1}

∣∣ pσ(i) ∈ C ∨ rσ(i) ∈ C}) is
the rightmost index of σ corresponding to a pair with a color in C, or − 1

2 if no
such index exists.
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Theorem 2 ([15]). For any TELA A = (Q,M,Σ, δ, q0, α) over the marks
M = {0, . . . , n− 1} and such that α is a Rabin condition, there exists an equiv-
alent TELA A′ = (QIAR,M ′, Σ, δIAR, (q0, π0), α

′) where α′ is a parity max odd
acceptance formula over 2n+2 colors. The initial permutation π0 can be chosen
arbitrarily. A dual construction transforms Streett into parity max even.

For proof, we refer the reader to Löding [16] (for state-based acceptance) and
to Křetínský et al. [15] (who adapted it to TELA).

For the intuition behind the definition of c in δIAR, imagine a transition
(q, σ)

x,{c}−−−→ (q′, π) on a cycle r′ of A′, and a matching transition q x,C−−→ q′ from
A. Assume the corresponding cycle r of the input automaton visits all colors in
C ′ = Rep(r). Because they are on the cycle r′, the IARs σ, π, and the others on
that cycle have all their indices P (C ′) to the left of the permutation. When we
scan the IAR σ from the right to the left to find the maximal indexm =M(σ,C)
corresponding to a pair matching C, three situations can occur: (1) If m ≥ 0
and pσ(m) ∈ C, we know that we are in the left part, and that all Rabin pairs
of indices σ(0), . . . , σ(m) are not satisfied on this cycle: the transition is labeled
with c = 2m+ 2 to indicate so. (2) If m ≥ 0 and pσ(m) /∈ C, it may be the case
that m is in the right part of the IAR, meaning that the Rabin pair of index
σ(m) is satisfied. We label the transition with c = 2m+1 to indicate acceptance,
but this might be canceled by a another transition emitting a higher even value
if pσ(i) appears elsewhere on this cycle. (3) Finally m = − 1

2 occurs when C = ∅,
in this case the transition is labeled by c = 0 as no pair is satisfied.

This procedure generates an automaton with |Q| × |I|! states in the worst
case, but unless colors occur multiple times in α, we usually have |I| ≤ n/2,
making IAR preferable to CAR.

Example 3. The arrow IAR in Figure 2 shows an example of IAR at work on a
Rabin automaton with two pairs. The output transition 2〈01〉 2〈10〉4 , cor-
responds to a loop labeled by C = { 0 , 2 } in the input. Since 0 is prohibited
in Rabin pair 1, index 1 has to move to the front of the history. Furthermore,
the rightmost index of 〈01〉 with a color in C is also m = 1 and corresponds to
p1 = 0 ∈ C, this justifies that the output transition is labeled by 2m+1+1 = 4 .

3.3 Partial Degeneralization

We now define the partial degeneralization of a TELA A according to some
subset D of its colors. Our intent is to modify A in such a way that we can
replace any sub-formula of the form

∧
d∈D Inf(d) in its acceptance condition α

by a single Inf(e) for some new color e. Similarly, any sub-formula of the form∨
d∈D Fin(d) will be replaced by Fin(e). We denote such a substitution of sub-

formulas by α[
∧
d∈D Inf(d)← Inf(e)][

∨
d∈D Fin(d)← Fin(e)].

The construction ensures that the runs of the output that see all colors of
D infinitely often also see e infinitely often. To do that, we consider an ordering
of {d0, d1, . . . d|D|−1} of D, and equip each state of the output automaton by a
level in L = {0, 1, . . . |D| − 1}. We jump from level i to level i+ 1 whenever we
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use a transition labeled by di; thus, we reach a level i only after having met the
i first colors of D. We jump down to level 0 when a transition t leaving a state
at level |D| − 1 is labeled by d|D|−1; moreover, since any cycle going through t
will have seen all colors in D, we can add the new color e to t.

An optimization, commonly done in degeneralization procedures [11, 1], is
that transition labeled by multiple consecutive colors of D may skip several
levels. Let us define this skipping of levels more formally as a function S :
L × 2M → L × 2{e} that takes a level i and a set C of colors seen by some
transition, and returns the new level j and a subset that is either ∅ or {e} to
indicate whether the new color should be added to the output transition.

S(i, C) =

{
(j, ∅) if j < |D|
(j − |D|, {e}) if j ≥ |D|

, where

j = max
(
k ∈ {i, i+1, . . ., i+|D|}

∣∣{di, d(i+1) mod |D|, . . ., d(k+|D|−1) mod |D|} ⊆ C
)
.

Theorem 3. Let A = (Q,M,Σ, δ, q0, α) be a TELA, and let C ⊆M be a set of
marks. Let D = {d0, d1, . . . , d|C|−1} be some ordering of the colors of C, and let
L = {0, 1, . . . , |C|} be a set of levels.
A is equivalent to its partial degeneralization according to C, defined by au-

tomaton A′ = (Q′,M ′, Σ, δ′, (q0, i0), α
′) where Q′ = Q × L, M ′ = M ∪ {e} for

some new color e /∈ M , α′ = α[
∧
d∈D Inf(d) ← Inf(e)][

∨
d∈D Fin(d) ← Fin(e)],

and δ′ =
{
(q1, i)

`,C−−→ (q2, j)
∣∣∣ q1 `,C∩M−−−−→ q2 ∈ δ, S(i, C ∩M) = (j, C \M)

}
. The

initial level can be any i0 ∈ L.

First, note that this procedure does not remove any color from the automa-
ton. This is because even though subformulas of the form

∧
d∈D Inf(d) are re-

moved from α, other parts of α, preserved in α′, may still use colors in D. Of
course, colors that do not appear in α′ may be removed from the automaton as
a subsequent step, and this is done in our implementation.

Moreover, because the algorithm keeps all used colors, the construction is
valid for any subset D ⊆M , even one that does not correspond to a conjunction
of Inf or disjunction of Fin in α. In such a case, the construction enlarges the
automaton without changing its acceptance condition.

Finally, in the case where α is a generalized Büchi condition over the marks
M , and D = M , then the resulting α′ will be Inf(e), and removing all the now
useless original colors will have the same effect as a classical degeneralization. In
this sense, the degeneralization is a special case of the partial degeneralization.Cf. Appendix D
Similarly, this procedure can also be seen as a generalization of the transforma-
tion of generalized-Rabin automata into Rabin automata [12].

Example 4. In Figure 2, the arrow PD{1,3} denotes the application of a partial
degeneralization according to the setM = { 1 , 3 }. This allows to rewrite accep-
tance’s sub-formula Fin( 1 )∨ Fin( 3 ) as Fin( 4 ) with a new color. Output states
(q, i) are written as qi for brevity. The ordering of colors is d0 = 3 , d1 = 1 .
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Fig. 1. Some arbitrary input TELA, to be paritized. For
readability, letters are not displayed.
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(Inf( 2 )∨Inf( 1 )) ∧
Fin( 0 )

)

−→
S+P

01〈201〉 00〈102〉

11〈201〉 11〈021〉

2

7

2

4

7

2

4

3

parity max even

−→ CAR

2 31 2

0 2 1

21
SCC 2 −→

S+P

(
Inf( 2 )∧Fin( 1 )︸ ︷︷ ︸

Rabin pair 0

)
∨
(
Inf( 1 )∧Fin( 0 )

)︸ ︷︷ ︸
Rabin pair 1

2〈01〉 2〈10〉
3〈01〉4

3
4

3
3

3
−→
IAR

parity max odd

4

1

2SCC 3 −→
S+P

Inf( 2 )∧Fin( 1 )

4

1

0−→
renumber

Fin( 1 )∧Inf( 0 )
(parity max even)

Fig. 2. Intermediate steps of the construction, handling the SCCs in different ways.
These steps are explained at various places through Sections 3 and 4.

01〈201〉

00〈102〉

11〈201〉

11〈021〉

2〈01〉

2〈10〉

3〈01〉 4
1

6
1

3

6

1

3

2

4

3

4

3

3

3
0 2

1

CAR of SCC 1,
adjusted for max odd IAR of SCC 2

SCC 3, adjusted
for max odd

Fin( 6 )∧(Inf( 5 )∨(Fin( 4 )∧(Inf( 3 )∨(Fin( 2 )∧(Inf( 1 )∨Fin( 0 ))))))
(parity max odd)

Fig. 3. Paritization of the automaton of Figure 1, combining the transformed SCCs of
Figure 2 after adjustment to a common acceptance condition.
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3.4 Optimizations

We now describe several optimizations for the aforementioned constructions.
Jump to bottom: The choice of the initial permutation π0 in the CAR, in

the IAR, or of the initial level i0 in the partial degeneralization is arbitrary. With
a bad selection of those values, a cycle can be turned into a lasso. For instance, if
we consider the input automaton x y0

1 , applying CAR with π0 = 〈0, 1〉
produces an automaton with the following structure: x〈01〉 y〈01〉 x〈10〉 ,
whereas π0 = 〈1, 0〉 would yield x〈10〉 y〈01〉 .

Instead of guessing the correct initialization, we simply use the fact that
two states (q, σ) and (q, π) recognize the same language: after the algorithm’s
execution, we redirect any transition leading to a state (q, σ) to the copy (q, π)
that lies in the bottommost SCC (in some topological ordering of the SCCs).
The initial state is changed similarly. The input and output automata should
have then the same number of SCCs.

This optimization applies to CAR, IAR, partial degeneralization, or combi-
nations of those. E.g., if partial degeneralization is used before CAR or IAR,
leading to states of the form ((q, i), σ), the search for an equivalent state in the
bottom SCC needs only consider q, and can simplify both constructions at once.

A similar simplification was initially proposed in the context of IAR for sim-
plifying one SCC at a time [15]. Heuristics used in degeneralization algorithms
to select initial level upon entering a new SCC [1] are then unnecessary.

History reuse: When processing an input transition labeled with multiple
colors, the insertion order of those colors (resp. Rabin pair indices) in front of
the history during an update of the CAR (resp. IAR) is arbitrary. Křetínský
et al. [15] suggested to check previously built states for one with a compatible
trail of the history, in order to avoid creating new states. While implementing
this optimization, we noticed that sometimes we can find multiple compatible
states: heuristically selecting the most recently created one (as opposed to the
oldest one) produces fewer states on average in our benchmark. It seems to create
tighter loops and larger “lasso prefixes” that can later be removed by the jump
to bottom optimization. Such history reuse can also be done a posteriori once a
candidate automaton has been built, to select better connections.

Heuristic selection of move order: When an input transition is labeled
with multiple colors, but no compatible destination state already exists to apply
the previous optimization, we select the order in which colors are moved to the
front of the history using a heuristic. Colors that are common to all incoming
transitions of the destination states are moved last, so they end up at the begin-
ning of the history. For instance in the CAR construction of Figure 2, this is how
the order 〈102〉 is chosen as destination history for transition 01 000 1 2 :
1 is common to all edges going to 00, so we want it at the front of the history.

SCC-aware algorithms: These algorithms benefit from considering the
SCCs of the original automaton. For CAR and IAR, the histories attached can
be restricted to the colors present in the SCC [15]. The partial degeneralization
needs not modify SCCs that do not contain all the colors C to degeneralize.
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Heuristic ordering of colors to degeneralize: Our implementation of the
partial degeneralization tries to guess, for each SCC, an appropriate ordering
of the color to degeneralize: this is done by maintaining the order as a list
of equivalence classes of colors, and refining this order as new transitions are
processed. For instance if we degeneralize for the colors C = { 0 , 1 , 2 , 3 }, the
initial order will be 〈{ 0 , 1 , 2 , 3 }〉, then if the first transition we visit has colors
{ 1 , 3 } the new order will be refined to 〈{ 1 , 3 }, { 0 , 2 }〉 and we jump to level
2 as we have now seen the first equivalence class of size 2.

Propagation of colors: To favor the grouping of colors in the dynamic
ordering of the partial degeneralization, and in the history reuse optimization
of IAR and CAR, we propagate colors as much as possible in SCCs. Ignoring
transitions that are self-loops or that do not have both extremities in the same
SCC, colors common to all incoming transitions of a state can be copied to all
outgoing transitions and vice-versa. E.g., x y z0 0

1 2 is seen as the
equivalent x y z0

0
0 1

10 2 , showing that cycles with 1 always have 0 .
The next section goes one step further in SCC-awareness, by actually sim-

plifying the acceptance condition for each SCC according to the colors present.
The paritization strategy to apply (CAR, IAR, identity, ...) can then be chosen
independently for each SCC.

4 Paritization with Multiple Strategies

We now describe our paritization algorithm taking as input a TELA A:

1. Enumerate the SCCs Si of A. For each Si, perform the following operations:
(a) Consider the sub-automaton A|Si

.
(b) Simplify its acceptance condition by removing unused colors (Fin(i) be- Cf. Appendix B

comes >, and Inf(i) becomes ⊥ for any color i unused in A|Si
), or dually,

colors that appear everywhere. Colors that always appear together can
be replaced by a single color, and disjunctions of Inf or conjunctions of
Fin can be reduced as discussed in Remark 2.

(c) Propagate colors in the SCC (Section 3.4).
(d) If the simplified acceptance condition contains conjunctions of Inf or dis-

junctions of Fin, apply the partial degeneralization construction (maybe
multiple times) for all those terms, and remove unused colors. Since this
incurs a blowup of the state-space that is linear (maybe multiple times)
in the number of colors removed, it generally helps the CAR construc-
tionwhich has a worst case factorial blowup in the number of colors. Also, Cf. Appendix C
after this step, the acceptance condition might match more specialized
algorithms in the next step. Jump to step 1b as the acceptance changed.

(e) Transform the automaton A|Si
into a parity max automaton Ri using

the first applicable procedure from the following list:
– If L (A|Si

) is empty [3], strip all colors and set the acceptance con-
dition to ⊥, which is a corner case for parity max even formula. (For
parity max acceptances, transitions without color can be interpreted
as having color −1.);
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– Do nothing if the acceptance is already a parity max formula;
– If the acceptance has the shape Inf(m0) ∨ (Fin(m1) ∧ (Inf(m2) ∨ ...))

of a parity max, renumber the colors m0,m1, . . . in decreasing order
to get a parity max formula;

– Adjust the condition to Inf( 0 ) and the labeling of the transitions if
this is a deterministic Rabin-like automaton that is Büchi-type (this
requires a transition-based adaptation of an algorithm by Krishnan
et al. [14]); note that Inf( 0 ) is also a parity max even formula.

– Dually, adjust the condition to Fin( 0 ) if this is a deterministic
Streett-like automaton that is co-Büchi-type, since Fin( 0 ) is also
a parity max odd formula.

– If the automaton is Rabin-like or Streett-like, apply IAR to obtain
a parity max automaton. When the acceptance formula can be in-
terpreted as both Rabin-like or Streett-like we use the interpretation
with the fewest number of pairs (cf. Remark 1).

– Otherwise, apply CAR to obtain a parity max automaton.

2. Now that each automaton A|Si
has been converted into an automaton Ri

whose parity acceptance is either max odd or max even, adjust those accep-
tance conditions by incrementing or decrementing the colors of some Ri so
that they can all use the same acceptance, and stitch all Ri together to form
the final automaton R. For any transition of A that goes from state q in
SCC i to state q′ in SCC j, R should have a transition for each copy of q in
Ri and going to one copy of q′ in Rj . Similarly, the initial state of R should
be any copy of the initial state of A.

3. As a final cleanup, the number of colors of R can be reduced by computing
the Rabin-index of the automaton [5].

Figures 1–3 show this algorithm at work on a small example with three SCCs.
Figure 3 shows the result of step 2. Executing step 3 would reduce the number
of colors to 2 (or to 3 if uncolored transitions are disallowed).

We now comment the details of Figure 2. The notation S+P refers to the
Simplification of the acceptance condition (step 1b) and the Propagation of
colors in the SCC (step 1c). On SCC 1, step 1b replaces 4 by 2 , because these
always occur together, and step 1c adds 2 on the transition from 1 to 0. After
partial degeneralization, the sub-formula Fin( 0 ) ∧ Fin( 4 ) can be fused into a
single Fin( 0 ) (see Remark 2) by simply replacing 4 by 0 in the automaton, and
after that the marks on the transitions before and after state 00 are propagated
by step 1c. The resulting automaton is neither Rabin-like nor Streett-like, so it
is transformed to parity using CAR; however the history of the states only have
3 colors to track instead of the original 5. In SCC2, Fin( 3 ) and Inf( 4 ) can be
replaced respectively by > and ⊥ because 3 and 4 are not used. The acceptance
condition is therefore reduced to the Rabin acceptance condition displayed, and
IAR can be used instead of CAR. (Using CAR would build at least 4 states.)
Finally SCC 3’s acceptance conditions reduces to Inf( 2 )∧Fin( 1 ). Renumbering
the colors to Fin( 1 ) ∧ Inf( 0 ) gives us a parity max odd acceptance.
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To stitch all these results together, as in Figure 3, we adjust all automata to
use parity max odd : in SCC 1 this can be done for instance by decrementing all
colorsand in SCC 3 by incrementing them (handling any missing color as −1).

Our implementation uses an additional optimization that we call the parity
prefix detection. If the acceptance formula has the shape Inf(m0) ∨ (Fin(m1) ∧
(Inf(m2) ∨ (...β))), i.e., it starts like a parity max formula but does not have
the right shape because of β, we can apply CAR or IAR using only β while
preserving the color m0,m1,m2, . . . of the parity prefix, and later renumber all
colors so the formula becomes parity max. This limits the colors that CAR and
IAR have to track, so it reduces the number of states in the worst case.

5 Experimental Evaluation

The simple CAR described in Section 3.1, without the optimizations of Sec-
tion 3.4 was implemented in Spot 2.8 [7] as a function to_parity(). It can
be used by Spot’s ltlsynt tool with option --algo=lar; in that case the LTL
specification ϕ passed to ltlsynt is converted to a deterministic TELA Aϕ
with arbitrary acceptance and then transformed into a parity automaton Pϕ
with to_parity() before the rest of the LTL synthesis procedure is performed.

The TELA Aϕ built internally by ltlsynt can be obtained using Spot’s
ltl2tgba -G -D command: the construction is similar to the delag tool [21] and
regards the original formula as a Boolean combination of LTL sub-formulas ϕi,
translating each ϕi to a deterministic TELA Aϕi

(by combining classical LTL-
to-generalized-Büchi translation [6] with specialized constructions for subclasses
of LTL [9], or a Safra-based procedure [23]), and combining those results using
synchronized products to obtain a TELA whose acceptance condition is the
Boolean combination of the acceptance conditions of all the Aϕi

.
In Spot 2.9, to_parity() was changed to implement Section 4 and the op-

timizations of Section 3.4. We are therefore in position to compare the improve-
ments brought by those changes on the transformation of Aϕ to Pϕ. 1

We evaluate the improvements on two sets of automata:
syntcomp contains automata generated with ltl2tgba -G -D from LTL for-

mulas from the sequential TLSF track of SyntComp’2017. Among those
automata, we have removed those that already had a parity acceptance
(usually Büchi acceptance). The remaining set contains 32 automata with a
generalized-Büchi condition, and 84 with a condition that mixes Fin and Inf
terms (only 1 of these can be considered Rabin-like or Streett-like). The av-
erage number of accepting SCCs is 1.9 (min. 1, med. 1, max. 4). The average
number of states is 46 (min. 1, med. 13, max. 986).

randltl contains 273 automata built similarly, from random LTL formulas. Fur-
thermore, we have ensured that no automaton has parity acceptance, and all
of them use at least 5 colors (med. 5, avg. 5.2, max. 9). The average number
of accepting SCCs is 1.7 (min. 1, med. 1, max. 5). The average number of

1 To reproduce these results, see https://www.lrde.epita.fr/~frenkin/atva20/

https://www.lrde.epita.fr/~frenkin/atva20/
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Fig. 4. Comparison of the new multi-strategy
paritization (Section 4) against the unopti-
mized CAR (Section 3.1)

Table 2. Effect of disabling different
optimizations on the arithmetic and ge-
ometric means of the number of states
on both benchmarks.

configuration amean gmean

all 48.71 14.43
all − Rabin to Büchi 48.72 14.45
all − parity prefix 48.97 14.54
all − simplify acc 49.32 15.07
all − hist. reuse 51.01 15.18
all − reuse latest 51.05 15.29
all − propagate colors 55.69 16.91
all − partial degen 2165.50 20.20
unoptimized CAR 5375.02 45.16

states is 5.8 (min. 1, med. 4, max. 41). Only 13 of these automata have a
Rabin-like or Streett-like acceptance condition.
The improvement of our new paritization based on multiple strategies over

our old unoptimized CAR implementation is shown on Figure 4.
Table 2 selectively disables some optimizations to evaluate their effect on

the number of output states.Configuration “all − x” means that optimizationCf. Appendix E
x is disabled. Rabin to Büchi is the detection of Rabin-like (or Streett-like)
automata that are Büchi (or co-Büchi) realizable at step 1e. Parity prefix is the
optimization mentioned at the very end of Section 4. Simplify acc, propagate
colors, and partial degen correspond respectively to steps 1b and 1c, and 1d.
Partial degeneralization appears to be the most important optimization, because
in addition to reducing the number of colors, it may help to use IAR or even
simpler construction. The propagation of colors, which allows more flexibility in
the selection of histories, is the second best optimization. Hist. reuse corresponds
to the history reuse described in Section 3.4. all − reuse latest has history reuse
enabled, but uses the oldest compatible state instead of the latest — hence our
heuristic of using the latest compatible state. Finally Unoptimized CAR is a
straightforward implementation of CAR given for comparison.

To assert the effect of the improved paritization on ltlsynt, we ran the entire
SyntComp’17 benchmark (including formulas omitted before) with a timeout of
100 seconds, and counted the number of cases solved by different configurations
of ltlsynt, as reported in Table 3. We can see that improving CAR with all
the tricks of Section 4 allowed the ltlsynt’s LAR-based approach to perform
better than ltlsynt’s Safra-based approaches.

6 Conclusion

We have presented a procedure that converts any TELA into a transition-based
parity automaton. Our algorithm combines algorithms that are transition-based
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Table 3. Number of SyntComp’17 cases solved by ltlsynt under different configu-
rations, with a timeout of 100 seconds. PAR-2 (penalized average runtime) sums the
time of all successful instances, plus twice the timeout for unsuccessful ones.

option approach to paritization # solved PAR-2

--algo=lar.old LTL to determ. TELA, then CAR of Section 3.1 175 7262s
--algo=sd LTL to Büchi, then split input/output variables,

then Safra-based determinization [20]
177 6879s

--algo=ds LTL to Büchi, then Safra-based determinization,
then split input/output variables [20]

180 6671s

--algo=lar LTL to determ. TELA, then approach of Section 4 185 6296s Cf. Appendix F

adaptations or generalizations of known procedures (e.g., CAR is a adaption of
the classical SAR and partial degeneration extends the standard generalization
technique), thus this paper can also be read as a partial survey of acceptance
condition transformations presented under a unified framework.

The CAR construction, which is the general case for our paritization al-
gorithm, produces smaller automata than the classical SAR, as it tracks colors
instead of states, and uses transition-based acceptance. We further improved this
construction by applying more specialized algorithms in each SCC (IAR [15], de-
tection of Büchi-realizable SCCs [14], detection of empty SCCs [3], detection of
parity) after simplifying their acceptance.

The proposed partial degeneralization procedure is used as a preprocessing
step to reduce conjunctions of Inf or disjunction of Fin in the acceptance condi-
tion, and to reduce the number of colors that CAR and IAR have to track. Since
partial degeneralization only causes a linear blowup in the number of colors re-
moved, it generally helps the CAR construction whose worst case scenario incurs
a factorial blowup in the number of colors. Furthermore, after partial degener-
alization, the acceptance condition may match more specialized algorithms.

The implementation of the described paritization procedure is publicly avail-
able in Spot 2.9. While our motivation stems from one approach to produce
deterministic parity automata used in Spot, this paritization also works with
non-deterministic automata: it preserves the determinism of the input.
Acknowledgment. The unoptimized CAR definition of Section 3.1 was first im-
plemented in Spot by Maximilien Colange.
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The following appendices contain extra material for interested readers and
are not part of the ATVA’20 proceedings. Appendices A to E were included in the
ATVA’20 submission, to be read at the discretion of the reviewers. Appendix F
was added while preparing the final version to answer one reviewer’s question,
unfortunately we did not have enough space to include it in the main text.

A Parity Acceptance Conditions

The following table gives parity max odd and parity max even acceptance for-
mulas for various number of colors, using the HOA syntax [2]. This may help
clarify corner cases for those formulas (e.g. with 0 or 1 color), or provide al-
ternative interpretations as other classical acceptance conditions for cases with
few colors. For Rabin(-like) and Streett(-like), the number of pairs is specified
between parentheses (see Remark 1 on page 4).

cond. formula alt. interpretation

m
ax

od
d

0 > accept all
1 Fin( 0 ) co-Büchi
2 Inf( 1 )∨Fin( 0 ) Streett(1), Rabin-like(2)
3 Fin( 2 )∧(Inf( 1 )∨Fin( 0 )) Streett-like(2)
4 Inf( 3 )∨(Fin( 2 )∧(Inf( 1 )∨Fin( 0 )))
5 Fin( 4 )∧(Inf( 3 )∨(Fin( 2 )∧(Inf( 1 )∨Fin( 0 ))))

m
ax

ev
en

0 ⊥ reject all
1 Inf( 0 ) Büchi
2 Fin( 1 )∧Inf( 0 ) Rabin(1), Streett-like(2)
3 Inf( 2 )∨(Fin( 1 )∧Inf( 0 )) Rabin-like(2)
4 Fin( 3 )∧(Inf( 2 )∨(Fin( 1 )∧Inf( 0 )))
5 Inf( 4 )∨(Fin( 3 )∧(Inf( 2 )∨(Fin( 1 )∧Inf( 0 ))))

Note that the HOA format, and therefore the automata we use, can label a
transition with any number of colors. Of course, when the acceptance condition
is a parity max condition, transitions with multiple colors can be simplified by
removing all colors but the maximum. Moreover, the absence of colors behaves as
an imaginary color −1 in terms of a parity max acceptance. Applications require
each transition to feature exactly one color may simply increment all existing
colors, introduce 0 on uncolored transitions, and toggle the parity.

B Acceptance Simplifications

In Step 1b of the algorithm of Section 4, we suggest simplifying the acceptance
condition using several rules, but do not list all the rules we apply. This appendix
provides more details about the rules we use to simplify an acceptance condition.

As the CAR complexity is factorial in the number of colors, we are only
interested in simplifications that reduce the number of colors, or that reduce the
size of the acceptance formula without introducing more colors.
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Assume that A is an automaton with acceptance condition α. As in Sec-
tion 3.3, we write α[β ← γ] to mean “in α replace any subformula equal to β by
γ”.

Basic cleanup
If color i does not appear on any transition of A, then overwrite α with
α[Fin(i)← >][Inf(i)← ⊥].
If color i appears on all transitions of A, then overwrite α with α[Fin(i) ←
⊥][Inf(i)← >].

Merging colors
If two colors i and j always occur together, overwrite α with α[Fin(j) ←
Fin(i)][Inf(j)← Inf(i)] and remove all occurrences of color j in A.

Simplifying complementary colors
If two colors i and j, are complementary2, i.e. i is present on a transition iff
j is not, then α can go through to following four rewriting rules:

α[Fin(i) ∧ Inf(j)← Fin(i)][Fin(i) ∧ Fin(j)← ⊥]
[Fin(i) ∨ Inf(j)← Inf(j)][Inf(i) ∨ Inf(j)← >]

Unit propagation
Inf(i) and Fin(i) behave like positive and negative literals in a formula. Thus,
if they appear as unit clauses a conjunctions or disjunction, then can be
propagated to the other clauses. In a subformula of the form Inf(i) ∨ β or
Fin(i) ∧ β, the subformula β can be simplified to β[Inf(i)← ⊥][Fin(i)← >].
Similarly, in a subformula of the form Fin(i)∨β or Inf(i)∧β, the subformula
β can be simplified to β[Inf(i)← >][Fin(i)← ⊥].

Fusing Inf-disjuncts or Fin-conjuncts
As per Remark 2, a formula of the form Inf(i)∨ Inf(j) (resp. Fin(i)∧ Fin(j))
can be replaced by Inf(k) (resp. Fin(k)) if we add color k on all transitions
with either i and j. As we do not want to increase the number of colors,
we only perform such a rewriting when either i or j occurs only once in the
formula.
Assuming colors m1, . . . ,mn occur only once in α, the general rule imple-
mented consists in substituting any subformula Inf(j)∨

∧n
i=1(Inf(mi)∨βi) by

a subformula
∧n
i=1(Inf(mi) ∨ βi), and replacing all occurrences of color j in

the automaton by the set of colorsm1, . . . ,mn. The rule is self-explanatory if
Inf(j) is first distributed inside the

∧n
i=1 before applying the trick described

in the previous paragraph.
A dual rule allows to remove Fin(j) in Fin(j) ∧

∨n
i=1(Fin(mi) ∧ βi).

Basic cleanup, merging colors, and simplifying complementary colors where
already implemented in Spot. Unit propagation and fusing were added while
working on this paritization procedure, and especially while looking at the effect
of the algorithm on automata with random acceptance conditions.
2 Those rules could be generalized to cases where each transition contain i, j, or both.
https://gitlab.lrde.epita.fr/spot/spot/-/issues/403

https://gitlab.lrde.epita.fr/spot/spot/-/issues/403
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Fig. 5. Effect of disabling the partial degeneralization in the new paritization.

C When Partial Degeneralization is not Desirable

Applying the partial degeneralization with m colors may remove m − 1 colors,
and multiply the number of states by m in the worst case. Applying CAR on
an automaton with n colors will multiply the number of states by n!. Thus,
in order to handle the worst case scenario, partial degeneralization should be
applied before CAR whenever possible. For instance if we did not perform the
partial degeneration on SCC1 of Figure 2 (page 9), CAR would have tracked
four colors and would have built a 6-state automaton.

Another argument in favor of doing a degeneralization is that it may help
shape the acceptance condition into something that is easier to paritize. As an
example, it may allow us to use IAR instead of CAR. From this perspective, it can
be useful to use a partial degeneralization even if it does not reduce the number
of colors of the automaton. However if the partial degeneralization process failed
to reduce the number of colors, and we still have to use CAR, then it is better
to apply CAR on the smaller, non-partially-degeneralized automaton.

A significant difference between the CAR/IAR procedures and the partial
degeneralization is that the latter has to fix an ordering of the colors. This way
it can keep track of the colors encountered using only a counter (an index in the
order) instead of a subset of colors, but this works best if the colors occur in
this order. Even if our implementation uses heuristics to select a more suitable
ordering for partial degeneralization (cf. Section 3.4), it may be the case that
it fails to find a good ordering, or that there is no good order for the entire
automaton.
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Comparing the number of states produced by our paritization procedure with
and without partial-generalization reveals a few cases where partial degeneral-
ization is actually harmful. See the few dots above the diagonal in Figure 5.

The following automaton illustrates a case where partial degeneralization
produces an automaton larger than direct application of CAR.

Consider the following input automaton:

0 10 1

2 3

10
1 2 (

Fin( 3 ) ∧ (Inf( 1 )∨Fin( 0 ))
)
∨
(
Inf( 0 )∧Inf( 2 )∧Inf( 3 )

)
Applying partial degeneralization on { 0 , 2 , 3 } yields the following automa-

ton. (The ordering of colors chosen heuristically is d0 = 0 , d1 = 2 , and d2 = 3 .)

01 00 02

11 12

0
1

0
1

0
1

3

3 4 43

1
0

1
0

1

(
Fin( 3 ) ∧ (Inf( 1 )∨Fin( 0 ))

)
∨ Inf( 4 )

By chance, the shape of the acceptance formula corresponds to a parity max
odd formula, up to a renaming of colors. After renaming 3 , 4 to 2 , 3 , and
keeping only the maximum color on each edge, we end up with a parity automa-
ton:

01 00 02

11 12

11 12

3 3

1 1

1

Inf( 3 ) ∨
(
Fin( 2 ) ∧ (Inf( 1 )∨Fin( 0 ))

)
parity max odd

The number of colors can be further lowered, but the point here is that using
the partial degeneralization created a 5 state parity automaton, and “saved” us
from using CAR or IAR.

However, in this case, had was used CAR directly on the input automaton,
we would have produced the following 4-state parity automaton instead:

0〈0123〉]

0〈2301〉 1〈0123〉

1〈1203〉
4

85

8
4

4 4

6

Inf( 8 ) ∨ (Fin( 7 ) ∧ (Inf( 6 ) ∨
(Fin( 5 ) ∧ (Inf( 4 ) ∨ (Fin( 3 ) ∧

(Inf( 2 ) ∨ (Fin( 1 ) ∧ Inf( 0 ))))))))
parity max odd

While this example shows that CAR’s performance may sometimes improve
if we don’t run the partial degeneralization first, our experiments suggest that
it is more often better to use it.

For that reason, our implementation features an option to try the paritization
with and without partial degeneralization. It was however disabled that in the
presented experiments, as it would hinder the interpretation of the results.
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Note that this specific automaton can be fixed by implementing3 an addi-
tional simplification of the acceptance condition. For instance, in the input au-
tomaton, one can notice that 3 always appears along with 2 , thus the formula
Inf(2) ∧ Inf(3) can be reduced to Inf(3). Both CAR and partial degeneralization
would then produce a 3-state parity automaton.

D Partial Degeneralization vs. Degeneralization and Co

For size reasons, we did not discuss in details how the partial degeneralization
of Section 3.3 differs from the classical degeneralization, or how it relates to the
transformation of generalized-Rabin to Rabin [12].

A classical degeneralization transforms a generalized Büchi automaton A
(transition-based or state-based) with n states and m colors, into a state-based
Büchi automaton with at most n(m + 1) states. The general principle is to fix
an order of the m colors, duplicate the structure of A in m + 1 copies (called
levels 0, . . . ,m), jump from level i to level i + 1 whenever the color of rank i
is encountered, mark the states in the last level as Büchi accepting, and have
their outgoing transitions always jump back to level 0 (or better, behave as if
they were starting in level 0). An improvement is to jump multiple levels at one
time [11] when possible, but never going past the last level, since that is where
acceptance states are located.

When applying this principle to produce transition-based Büchi automata,
only m levels are necessary, and when a transition starting level m sees the
color of rank m, it produces an accepting transition going back to level 0. One
subtle change made in the definition of S(s, C) (page 8) is that those accepting
transitions do not always go to level 0, but to level j − |D|, i.e., they may also
skip levels. To our knowledge, this is the first time this is mentioned.

Our partial degeneralization is simply a generalization of this degeneraliza-
tion principle to work on any subset of colors in the automaton, regardless of the
acceptance condition. In order to do so, we have to keep the original colors in
the output, and introduce a new one to mark the points where all tracked colors
have been seen. However when applied to subset of colors that appear only once
in the acceptance condition, and in a subformula α that is generalized-Büchi or
generalized-co-Büchi, then this subformula may be simplified and the original
colors discarded.

When applied to a generalized-Büchi automaton, and after removing the
unused colors, our partial degeneralization produces an automaton similar to
what would be produced by any classical degeneralization to transition-based
Büchi (modulo the small improvement to S(s, C) discussed before).

The conversion of generalized-Rabin with k “generalized pairs” into to Rabin
automaton with k pairs, presented by Křetínský et al. [12] can be seen k partial
degeneralization run in parallel: each state therefore keeps tracks of a vector of
k levels. The same effect can be obtained by running the partial generalization
k times, once for each generalized Rabin pair.
3 https://gitlab.lrde.epita.fr/spot/spot/-/issues/406

https://gitlab.lrde.epita.fr/spot/spot/-/issues/406
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For these reasons, we consider that the presented partial degeneralization is
a useful building block: it is a single algorithm that can replace existing more
specialized techniques (degeneralization of generalized Büchi automata, degen-
eralization of generalized-Rabin automata) and be used in other cases (in our
case, preprocessing TELA with arbitrary acceptance conditions before applying
CAR or IAR).

E More Detailed Comparison of Optimizations

Table 4 is a more detailed version of Table 2 where we can see the effect on the
two datasets, and we also consider the case where we disable all optimizations or
only enable one at a time. We can see that enabling only partial degeneralization
(“nothing + partial degen”) is better than enabling all other options except
partial- degeneralization (“all − partial degen”). No other optimization has such
a large effect.

The scatter plot of Figure 4 compares the cases summarized by lines all and
unoptimized CAR, while Figure 5 plots the data of lines all and all − partial
degen.

Table 4. Effect of various optimizations on the paritization procedure. Configura-
tion “all” corresponds to the algorithm of section 4. Configuration “unoptimized CAR”
corresponds to the basic CAR implementation of section 3.1. Configuration “nothing”
implements only the SCC-based selection of CAR or IAR.

dataset randltl syntcomp both

config amean gmean amean gmean amean gmean

all 17.06 10.68 124.5 29.72 48.71 14.43
all − Rabin to Büchi 17.08 10.70 124.5 29.72 48.72 14.45
all − parity prefix 17.44 10.79 124.5 29.72 48.97 14.54
all − simplify acc. 17.93 11.35 124.5 29.72 49.32 15.07
all − hist. reuse 18.52 11.37 128.8 30.30 51.01 15.18
all − reuse last 18.60 11.50 128.8 30.28 51.05 15.29
all − propagate colors 25.18 13.33 128.8 29.85 55.69 16.91
nothing + partial degen 33.19 17.24 144.2 30.54 65.89 20.40
all − partial degen 18.76 11.78 7306.4 73.60 2165.50 20.20
nothing + propagate colors 26.34 16.95 9351.7 96.22 2773.34 28.27
nothing + hist. reuse (last) 30.22 17.31 15244.3 91.02 4511.89 28.23
nothing + hist. reuse (first) 35.53 20.81 17101.3 101.21 5062.67 33.16
nothing + simplify acc. 34.26 18.49 17433.1 102.23 5159.51 30.60
nothing + parity prefix 35.91 20.67 17454.7 103.29 5167.02 33.20
nothing + Rabin to Büchi 36.56 21.13 17454.7 103.29 5167.47 33.72
nothing 36.57 21.14 17454.7 103.29 5167.48 33.73
unoptimized CAR 49.64 29.37 18127.9 126.57 5375.02 45.16
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F Differences Between ltlsynt Configurations

While table 3 shows that the new version of LAR solves more cases than the
other configurations of ltlsynt, it does not actually tell whether the set of
cases solved is a superset of the other configurations or not. Table 5 reveals that
despite the number of solved cases increasing, some cases are solved by other
configurations but not by the new LAR.

The case of round_robin_arbiter_5.tlsf where lar fails and lar.old
could be a measurement error. While preparing the camera-ready version of
this article, we could not reproduce the failure of the lar configuration on this
specification: lar and lar.old both seem to take 54 seconds (way below the
100-second timeout), and in both cases 53 seconds are spent in the translation,
and 1 second in the paritization.

In a future work, we plan to update this benchmark with data from the
SyntComp’20 edition.

Table 5. Specifications of the SyntComp’17 benchmark for which at least one config-
uration of ltlsynt succeeded (X) and at least one configuration failed (−).

file lar.old sd ds lar

ltl2dba_U1_6.tlsf X − X X
loadfull5.tlsf X − X X
amba_decomposed_arbiter.tlsf − X X X
full_arbiter_4.tlsf − X X X
prioritized_arbiter_4.tlsf − X X X
round_robin_arbiter_6.tlsf − X X X
detector_6.tlsf − − − X
detector_unreal_8.tlsf − − − X
detector_unreal_10.tlsf − − − X
detector_unreal_12.tlsf − − − X
lilydemo18.tlsf − − − X
ltl2dba08.tlsf − − − X
ltl2dba_C2_6.tlsf − − − X
round_robin_arbiter_5.tlsf X X X −
full_arbiter_5.tlsf − − X −
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