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Abstract

C++ is a multi-paradigm language that enables the program-
mer to set up e�cient image processing algorithms easily.
This language strength comes from many aspects. C++ is
high-level, so this enables developing powerful abstractions
and mixing di�erent programming styles to ease the develop-
ment. At the same time, C++ is low-level and can fully take
advantage of the hardware to deliver the best performance.
It is also very portable and highly compatible which allows
algorithms to be called from high-level, fast-prototyping
languages such as Python or Matlab. One fundamental as-
pects where C++ shines is generic programming. Generic
programming makes it possible to develop and reuse bricks
of software on objects (images) of di�erent natures (types)
without performance loss. Nevertheless, conciliating gener-
icity, e�ciency, and simplicity at the same time is not trivial.
Modern C++ (post-2011) has brought new features that made
it simpler andmore powerful. In this paper, we focus on some
C++20 aspects of generic programming: ranges, views, and
concepts, and see how they extend to images to ease the
development of generic image algorithms while lowering
the computation time.

CCS Concepts: • Software and its engineering→ Soft-

ware development techniques; • Computing method-

ologies → Image processing.
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1 Introduction

C++ claims to “leave no room for a lower-level language (except
assembler)” [30] which makes it a go-to language when devel-
oping high-performance computing (HPC) image processing
applications. The language is designed after a zero-overhead
abstraction principle that allows us to devise a high-level
but e�cient solution to image processing problems. Other
aspects of C++ are its stability, its portability on a wide
range of architectures, and its direct interface with the C
language, which makes C++ easily interoperable with high-
level prototyping languages. Therefore, many image process-
ing libraries (and numerical libraries in general) implement
performance-sensitive features in C++ (or C/Fortran as in
OpenCV [4], IPP [8]) or with a hardware-dedicated language
(e.g. CUDA [5]), which are exposed through a high-level API
to Python, LUA, etc.

Apart from the performance considerations, the problem
lies in that each image processing �eld comeswith its own set
of image type to process. The most common image type is an
image of RGB or gray-level values, encoded with 8-bits chan-
nel, on a regular 2D rectangular domain. That covers 90%
of common usages. However, new image types have come
with the development of new devices: 3D multi-band images
in Medical Imaging, hyperspectral images in Astronomical
Imaging, images with complex values in Signal Processing.
An image processing library able to handle those images

Figure 1. The watershed segmentation algorithm runs on a
2D-regular grayscale image (left), on a vertex-valued graph
(middle) and on a 3D mesh (right).

https://doi.org/10.1145/3564719.3568692
https://doi.org/10.1145/3564719.3568692
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template <Range R>

requires MaxMonoid<value_t<R>>

auto maxof(R col) {

value_t<R> s = min_of_v<value_t<R>>;

for (auto e : col)

s = max(s, e);

return s;

}

template <typename T>

concept MaxMonoid =

requires(T x) {

{ T v = 0; };

{ x = max(x, x); };

}

Figure 4. Concept-checked sum algorithm over a collection.

template <class I, class SE>

void dilation(I in, I out, SE se) {

for (auto p : out.domain()) {

value_t<I> s = min_of_v<value_t<I>>;

for (auto q : se(p))

s = max(s, in(q))

out(p) = s;

}

}

Figure 5. Generic dilation algorithm.

2 Algebraic Properties of Images and
Related Notions

2.1 The Abstract Nature of Algorithms

Most algorithms are generic by nature as demonstrated in
the Standard Template Library (STL) [29] where one has to
work on a collection of data. For example, let us consider the
algorithm maxof(Collection c) that gets the maximal element
of a collection (see �g. 4). Whether the collection is actu-
ally implemented with a linked-list, a contiguous bu�er of
elements or whatever data structure is irrelevant. The only re-
quirements for this algorithm are: (1) we can iterate through
it; (2) the type of the elements is regular (i.e. behaves the
same way as a primitive type like int) and forms a monoid
with an associative operator “max” and a neutral element
“std::numeric_limits<value_t<R»::min()”. Amonoid is
an abstract algebraic structure equipped with an associative
binary operation and an identity element. Such structure
is studied to achieve high e�ciency in several areas, such
as distributed computation of small scale algorithms [11]
calculus of object query languages [14]. There exists other
algebraic structures, such as semi-ring dictionaries [27] that
are studied to unify performance optimizations used in both
database and linear algebra.

The constraint (1) is abstracted by pairs of iterators in the
STL and ranges in C++20, while C++20 introduces concepts
to check if a type follows the requirements of the algorithm.
The term concept is de�ned as follows in [13]: “a set of axioms
satis�ed by a data type and a set of operations we can perform
on it.”. Concepts enable checking the requirements for (2).

2.2 The Image Concept

Most image processing algorithms are also generic [19, 20,
25] by nature. We saw in section 2.1 that concepts emerges
from pattern behavior extracted from algorithms. Similarly
to �g. 4, let us consider the morphological dilation of an
image 5 : � → � (de�ned on a domain � with values in � ) by

template <class I>

concept Image = requires {

point_t<I>; // Type of point (P)

value_t<I>; // Type of value (V)

} && requires (I f, point_t<I> p, value_t<I> v) {

{ v = f(p) }; //

{ f(p) = v }; // optional, for output

{ f.domain() } -> Range; // (actually Range of P)

};

template <Image I, StructuringElement SE>

void dilation(I input, I output, SE se)

requires MaxMonoid<value_t<I>>

{ ... }

Figure 6. Image concept and constrained dilation algorithm.

a �at structuring element (SE) B (we note �Į the SE centered
in G). The dilation is de�ned as X Ĝ (G) = sup{5 (~), ~ ∈ �Į };
the generic algorithm is given in �g. 5. As one can see, the
implementation does not rely on a speci�c implementation
of the image. It could be a 2D image, a 3D image or even a
graph image (the SE would be the adjacency relation of the
graph).
The image requirements can be extracted from this algo-

rithm. The image must provide a way to access its domain �

which must be iterable. The structuring element must act as
a function that returns a range of elements having the same
type as the domain element (let us call them points of type
% ). Image needs to provide a way to access its value for a
given point (f(x)) with x of type P. Last, as in �g. 4, image
values (of type + ) have to support max and have a neutral
element “0”. We deduce the -simpli�ed- Image concept and
the constrained dilation algorithm in �g. 6. Actually, the re-
quirements for being an image are quite light. This provides
versatility and allows us to pass non-regular “image” objects
as inputs such as the image views in section 3.

While C++20 provides all the tools necessary to properly
de�ne concepts as well as leveraging them when implement-
ing algorithms, it is still necessary to make the inventory
of the algorithms families (explained in section 2.1) in order
to actually extract the concepts related to image process-
ing. This extracting process is detailed more in-depth by the
authors in [26]. We performed the image processing con-
cept extraction and made it available alongside the image
processing library Pylene [9].

3 Image Views: Ease and Performance

3.1 Ranges and Views in the C++20 STL

C++20 ranges [22] formalizes the concept of view, extend-
ing the array views implemented in array-manipulation li-
braries [2, 35], and transferable to the Image concept. In the
STL, there is a distinction between the container owning the
data bu�er, the iterators related to traversing this container,
the range encapsulating the iterator pair allowing traversing
the container and the view which mutates the way the base
range traverse the data it is related to. All those abstraction
levels need proper re�ned design about data ownership and
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sequence operators. Views use the functional paradigm and
are created by functions that take a function as argument:
the operator or the predicate to apply pixel-wise; we do
not iterate by hand on the image pixels. Also, it o�ers the
opportunity to raise the IP practitioner reasoning by one
level. Indeed, in our example �g. 10, the thresholding rou-
tine is written without any consideration of the dimension
of the image (2D, 3D), nor the underlying data-type (8-bits,
�oat, RGB). Thanks to this new abstraction level, we are able
to express more complex image processing routines very
smoothly while remaining generic by default. For instance,
restricting the input image to a speci�c region or to a speci�c
color channel becomes as simple as writing the following
code:

auto imroi = thresholdf(view::clip(img_gray, roi)); // ROI

auto imred = thresholdf(view::red(img_gray));//Red channel

Views for lazy computing. Because the operation is
recorded within the image view, this new image type al-
lows fundamental image types to be mixed with algorithms.
In �g. 10, the creation of views does not involve any com-
putation in itself but rather delays the computation until
the expression E (?) is invoked (requesting the value for the
point ?). Because views can be composed, the evaluation
can be delayed quite far. Image adaptors are template expres-
sions [34, 35] as they record the expression used to generate
the image as a template parameter. A view actually repre-
sents an expression tree (cf. �g. 13). This approach is close
to designing a Domain Speci�c Language (DSL) [33], but
it remains within the C++ languages, which is unlike an-
other DSL for Image Processing named Halide [24] that have
chosen to provide their toolchain infrastructure to solve per-
formance issues related to heterogeneous computing.
Views for performance. With a classical design, each

operation of the pipeline is implemented on “its own”. Each
operation requires memory to be allocated for the output
image and also, each operation requires that the image is
fully traversed. This design is simple, �exible, composable,
but is not memory e�cient nor computation e�cient. With
the lazy evaluation approach, the image is traversed only
once. That has three bene�ts. First, there are no intermediate
images, which is very memory e�ective. Second, traversing
the image maybe be faster thanks to a better memory cache
usage. Indeed, a view acts as if we were writing an optimal
operator that would combine all the operations. This ap-
proach is somewhat related to the kernel-fusing operations
available in some HPC speci�cations [17] but views-fusion
is directly optimized by the C++ compiler [6]. Also, as we
saw that the operations are represented by a functional Ab-
stract Syntax Tree (AST), the compiler is able to perform
optimization based on the deforestation algorithm [36] that
removes intermediate computation trees in order to achieve
a treeless form. Third, and the most important, if there is a
domain restricting operation downstream in a view pipeline,

void blend_inplace(const uint8_t* ima1, uint8_t* ima2, float alpha,

int width, int height, int stride1, int stride2) {

for (int y = 0; y < height; ++y) {

const uint8_t* iptr = ima1 + y * stride1;

uint8_t* optr = ima2 + y * stride2;

for (int x = 0; x < width; ++x)

optr[x] = iptr[x] * alpha + optr[x] * (1-alpha);

}

}

Figure 11. Alpha-blending with classical C/C++ code.

ima

← 0.2 ×

im1

+ 0.8 ×

im2

Figure 12. Alpha-blending algorithm written at image level.

+

∗

im1 alpha

∗

im2 1− alpha

auto blend =

[](auto ima1, auto ima2, float alpha) {

return alpha * ima1 +

(1 - alpha) * ima2; };

Figure 13. Alpha-blending, generic implementation with
views, expression tree.

the operation upstream will only be performed on the rel-
evant region of interest, instead of being performed on the
whole image if there was no lazy-computing involved.

3.3 Reasoning at Image Level

The �nal argument we bring in our discussion about views
is the fact that the IP practitioner raises his reasoning by one
level. Indeed, let us take a look at the alpha-blending algo-
rithm as a support example for our argument. The default
code for a classical, handmade (and error-prone C++) alpha-
blending is presented in �g. 11. This algorithmmakes several
non-relevant hypotheses about the image type. Indeed, it
is not relevant to the �nal application whether the image’s
color is 8-bits RGB or �oat. Also, the practitioner may only
need to process a speci�c color channel, or a speci�c region
of the image. The image may also be 3D. To summarize, there
are a lot of hypotheses that are not relevant to the applica-
tion logic and yet weight on the resulting implementations
which lead us to the need of genericity. The solution is to
shift the abstract level by one layer and reason at image level,
as shown in �g. 12 which presents the code and the produced
view expression tree. Rewriting the low level algorithm in
terms of views is as simple as in �g. 13. Finally, we also show
in �g. 14 how simple it now becomes to restrict input im-
ages to a speci�c region or speci�c color channel directly by
chaining views at image level thanks to being able to reason
at image level. The code has become more readable, more
expressive and more e�cient by default.
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auto ima = blend(ima1, ima2, 0.2); // User-defined view

auto ima_roi = blend(clip(ima1, roi), clip(ima2, roi), 0.2); // ROI

auto ima_red = blend(red(ima1), red(ima2), 0.2); // Red channel

Figure 14. Chaining views to feed alpha-blending.

Background Candidate Result

Figure 15. Foreground extraction: sample result.

3.4 Comparison with Data Flow Oriented

Frameworks

A parallel can be drawn between image views and the data
�ow oriented programming [12] style used in Data Science
such as Apache Spark [37] or even TensorFlow [1]. Indeed,
we �nd similar properties in those data �ow system, such
as composition and lazy-computing. Data �ow oriented pro-
gramming is heavily inspired from functional programming
collections (Scala, Haskell). Let us focus on the Apache Spark
programming model for this comparison.

It is very similar to our view design in the fact that trans-
formations (partitioning functions) can be compared to views
(computed lazily and chainable) and actions (performed on
Resilient Distributed Dataset (RDD) constructed from trans-
formations) can be compared to our algorithms (perform
the work and resolve the transformation). However, it dif-
fers from views at runtime. Views may only do computation
on a speci�c requested part of an image (as seen in sec-
tion 3.2) whereas the Spark pipeline may do transformations
on the whole dataset prior to performing a narrowing trans-
formation. Indeed, Spark aims at distributing asynchronously
computation on clusters, that is why it does not prevent inef-
�cient and unnecessary computation due to the nature of the
acyclic computation graph computed from RDDs. In contrast,
views are static, and their compositions is static. There is no
need for a framework for that. Also, Views enables in-place
computation (through projectors) which is very memory
e�cient.
Finally, our design di�ers in the sens that views are still

image types (embedding an operation). The IP practitioner
can focus on the behavior of his images and algorithms by
reasoning at image level. On the other hand, data �ow pro-
grammer focuses on the data and how to transform it in order
to extract information. Design-wise, an RDD is a generalized
super-type of data, more �exible due to its dynamic nature,
but it does not abstract away the underlying complexity
incurred by the processed data.

Table 2. Benchmarks of the pipeline �g. 9 on a dataset (12
images) of 10MPix images with OpenCV as a baseline.

Framework Compute Time

(Ă)

Memory

usage (�)

Binary size

(�)

Ours (no view) 2.11 s (± 144ms) 106MB (+0%) 3.3MB (+0%)

Ours (views) 2.13 s (± 164ms) 51MB (-52%) 2.7MB (-17%)

OpenCV 2.41 s (± 134ms) 59MB (-44%) 2.9MB (-11%)

4 Experimentation

To highlight the interest of Generic Programming and views
in the context of performance-sensitive applications, we
study the impact on a simple but real case image processing
pipeline aiming at extracting objects from a background as
depicted on �g. 9. Simply said, it computes the di�erence
between an image and a registered image. The Gaussian
blur and the morphological opening allow some robustness
to noise. The pipeline is implemented with (1) OpenCV, (2)
our library (Pylene) where each step is a computing oper-
ator, (3) and our library where the purple blocks are views.
This pipeline actually produces interesting results, as shown
in �g. 15. In table 2, we benchmark the computation time
and the memory usage (using valgring/massif ) of these im-
plementations (all single-threaded) with an opening of disc
of radius 32 on 10 MPix RGB images (the minimum of many
runs is kept).

The results should not be misunderstood. They do not say
that OpenCV is faster or slower but shows that implemen-
tations all have the same order of processing time, despite
the fact that the algorithms used in our implementation are
not the same as those used in OpenCV for blur and dila-
tion/erosion, so that the comparison makes sense. It allows
us to validate experimentally the advantages of views in
pipelines. First, we have to be cautious about the real bene�t
in terms of processing time. Here, most of the time is spent
in algorithms that are not eligible for view transformation.
Thus, depending on the operations of the pipeline, views
may not improve processing time. Nevertheless, using views
does not degrade performance neither (only 1% in this exper-
iment). It seems to show that using views does not introduce
performance penalties and may even be bene�cial in light-
weight pipelines as the one in section 3. On the memory
side, views reduce drastically the memory usage which is
bene�cial when developing applications which are memory
constrained. On the binary size side, while we can fear “code
bloat” due to many template instanciations, it appears that
our binary size is very much in the same order of magnitude
as for one doing the samework with OpenCV.We can deduce
that the compiler is able to prune generated code and keep
only needed and optimized machine code in the �nal binary.
From the developer standpoint, it requires only few changes
in the code as shown in �g. 10 — the implementation of the
algorithms remains the same — which is a real advantage
for software maintenance.
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To conclude, the main advantage of views lies in the usabil-
ity gain for the user without degrading performance. They
can even improve memory usage e�ciency, which is useful
for embedded systems. To showcase this point, we o�er addi-
tional material 1 demonstrating how views can, for instance,
be used for a connected-component labeling algorithm. On
a toy example, (a simpler pipeline) we show that views can
improve performance (the source is in the supplementary
material).

5 Limitations and Conclusion

This paper demonstrates the usage of image views, a mod-
ern C++ feature applied to image processing, that reconciles
genericity, e�ciency and ease of use. This contribution al-
lows the IP practitioner to reason at image level, which is
novel in the C++ IP library ecosystem, and facilitates the
transition between prototypes and production-ready appli-
cations. In addition to improving the usability, it leads to
performance gain and decreases the memory usage. These
ideas have been implemented in our C++20 library [9] and
used for concrete image processing applications (medical
imaging and document analysis).
Despite these advantages, this design comes with some

limitations. The intensive use of the C++ templates generates
type combinatorial explosion and code bloat that leads to
large compilation times. Also, templates belong to the static
world and are poorly interoperable with the dynamic world.
Nevertheless, dealing with the dynamic world (runtime) is
mandatory when it comes down to exposing a static library
to a dynamic language like Python, in order to provide the
interactivity that C++ lacks. Another drawback lies in re-
lying on the compiler to do a lot of work, especially the
optimizer. Therefore, when the compiler fails in optimizing
our abstractions away, we pay the price in performance. Our
future work will be dedicated to �x these shortcomings.
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