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Abstract Serverless computing has gained widespread adoption due to its simpli-
fied management and lightweight design, particularly when paired with container
orchestration systems like Kubernetes. By enabling developers to focus on applica-
tion logic without managing underlying infrastructure, serverless computing offers
advantages such as runtime-based billing in millisecond units, reducing operational
costs and appealing to enterprises. This study evaluates resource utilization across
24 combinations of Ubuntu and Debian operating systems with Docker and Pod-
man container platforms under varied workloads. Results indicate that Ubuntu with
Docker achieves superior efficiency in CPU and RAM usage compared to other
configurations. This experimental analysis provides practical insights into hardware
resource management for serverless deployments and highlights opportunities for
improving infrastructure in diverse scenarios.

1 Introduction

Monolithic software architecture consolidates all functions into a single module or
application, placing all system functionalities in the same environment. This design
faces challenges in scalability, maintenance, and updates, often requiring special-
ized teams for both application and hardware maintenance. Such constraints in-
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crease system complexity, compromise stability, and inflate operational costs. To
overcome these challenges, companies like Amazon, Netflix, and Uber have tran-
sitioned to microservices architecture [6], where small, independent applications
perform specific tasks. This ecosystem of modular services improves scalability, re-
source utilization, and adaptability, enabling better allocation of physical and human
resources.

Building on the advantages of microservices and the emergence of container or-
chestration technologies, serverless computing has gained traction for its simplic-
ity and resource efficiency. Serverless computing allows users to write functions in
any language while the underlying server management is handled by cloud service
providers [7]. This model reduces developer overhead and introduces cost-efficient
billing based on resource usage, making it increasingly attractive for enterprise ap-
plications.

Serverless computing is categorized into Backend-as-a-Service (BaaS) and Function-
as-a-Service (FaaS) models [8]. BaaS delivers services via APIs, while FaaS pro-
vides stateless and event-driven functions. Applications range from machine learn-
ing [15] to IoT [16] and big data analysis [2]. By 2025, an estimated 50% of global
enterprises will adopt serverless computing, leveraging advancements in microser-
vices and cloud computing [11].

Despite its benefits, serverless computing presents challenges for cloud providers,
including resource provisioning, latency management, and maintaining cost-efficiency.
Issues such as high cold start latency, communication overhead, and monitoring in-
efficiencies have been identified in Function-as-a-Service (FaaS) platforms [12, 5].
To address these issues, providers must optimize factors such as latency, throughput,
and resource overhead [12, 5, 1].

This study evaluates open-source solutions for serverless application infrastruc-
ture, focusing on hardware resource utilization under various scenarios. The findings
aim to provide actionable insights into improving the performance of serverless de-
ployments.

The remainder of this paper is structured as follows: Section 2 reviews related
work, summarizing previous research on serverless computing infrastructures. Sec-
tion 3 describes the methodology employed in this study. Section 4 details the ex-
perimental design, including test environments and scenarios analyzed. Section 5
presents and evaluates the results. Finally, Section 6 concludes with a summary of
findings and future research directions.

2 Related Works

Several studies address the challenges and benefits of serverless computing but lack
practical and reproducible insights into open-source frameworks. This work fills that
gap, evaluating resource utilization and performance across multiple open-source
serverless solutions.
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Li et al. [7] review resource management techniques and future directions such
as edge integration but omit practical evaluations using open-source frameworks.
Our study addresses this through empirical testing with tools like OpenFaaS and
Kubeless.

Hassan et al. [3] highlight serverless benefits, including cost savings and scalabil-
ity, but rely on theoretical analysis. Our research complements this by implementing
and evaluating practical serverless infrastructure setups.

Scheuner et al. [13] analyze Function-as-a-Service (FaaS) performance in private
clouds, focusing on cold start latency and resource scaling. However, they overlook
open-source alternatives, which our study explores through tools like OpenWhisk
and Knative.

Liu et al. [9] improve serverless function performance through cold start latency
reduction but concentrate on function-level optimization. Our research shifts the
focus to infrastructure-level evaluations with open-source tools.

Lin et al. [8] model serverless workflows to balance cost and performance, yet
limit their scope to private clouds. Our study broadens this by testing multiple plat-
forms and providing insights into diverse configurations.

Wen et al. [14] introduce Super Flow for serverless testing but focus narrowly on
specific setups. In contrast, our study compares multiple open-source alternatives,
offering a comprehensive view of serverless performance across different scenarios.

In summary, while these studies underscore the importance of serverless per-
formance and cost-efficiency, most lack practical, open-source evaluations. Our re-
search bridges this gap, offering reproducible insights and actionable guidelines for
deploying serverless solutions with open-source tools.

3 Research Goals and Methodology

This study aims to achieve the following goals:

• Analyze the performance characteristics of different serverless infrastructure
configurations under varying workloads;

• Evaluate the impact of container orchestrators, operating systems, and HTTP
methods on resource utilization and response times;

• Develop a set of guidelines for configuring optimal serverless computing envi-
ronments.

In order to do that we used an adapted version of the methodology proposed
in [10], structured to systematically execute and analyze experiments on serverless
computing infrastructure. The methodology is organized into three main phases:
Literature Review, Pre-Evaluation, and Assessment, each comprising defined ac-
tivities that align with the research goals.

Figure 1 presents the methodology flowchart, illustrating the sequence of steps
and decisions. Rectangles represent process steps, diamonds indicate branching
paths, and dashed rectangles detail associated actions such as parameter definition
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and testing. The methodology ensures coherence and reproducibility, enabling struc-
tured execution and robust analysis.
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Fig. 1 Methodology

The Literature Review phase establishes the foundation for the research by an-
alyzing recent scientific contributions in the field of serverless computing. A total
of 187 articles were initially identified (see Figure 2). After applying inclusion and
exclusion criteria, 23 articles remained, with a final selection of 16 articles deemed
relevant based on a quality cutoff score of 2.5. This phase focused on identifying
key concepts, tools, and performance issues related to serverless computing. Key
findings highlight a growing interest in serverless computing, particularly in ad-
dressing performance issues such as response time and cold starts. Additionally, the
predominance of topics such as Cloud Computing (21%), Cold Start (18%), and
Response Time (18%) reflects the research community’s emphasis on performance
optimization.

(a) Publications by year (b) Publications by subject

Fig. 2 Literature Review

The Pre-Evaluation phase defined the experimental setup and tools to be used,
encompassing the contextualization and parameterization of the study. The infras-
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tructure for experiments was configured on a cloud server with specifications in-
cluding 4 virtual CPUs, 8 GB RAM, and 200 GB of disk space. The server uti-
lized Ubuntu Server 22.04.3 LTS and Debian 12.5 as the operating systems, while
Podman v3.4.4 and Docker v2.27.0 were employed as container orchestrators. Ad-
ditionally, Kubernetes v1.28 and Knative v1.12.3 were used as serverless frame-
works, ensuring compatibility and reliability for benchmarking containerized work-
loads. Experimental scenarios were parameterized with workloads categorized as
low, medium, and high, simulating up to 100, 500, and 1000 simultaneous users,
respectively. Resource usage metrics such as CPU, disk I/O, network, and response
time were monitored using Linux-based tools including pidstat, pidof, and
/proc/meminfo. Each experiment lasted 60 minutes and tested combinations of
operating systems, orchestrators, HTTP methods, and workloads. These scenarios
were designed to provide insights into optimizing server infrastructure to enhance
user experience and avoid service interruptions.

The Assessment phase encompassed the execution of experiments, data process-
ing, and iterative refinement of the setup. During the test execution stage, scripts
were executed for each scenario, generating data on resource utilization and perfor-
mance metrics. This stage was carefully controlled to ensure consistent and compre-
hensive data collection. The data processing stage involved exporting collected data
for visual representation using Gnuplot, along with the calculation of statistical mea-
sures such as standard deviation and confidence intervals to validate the results. The
refinement phase focused on making iterative adjustments to experimental parame-
ters, scripts, or hardware configurations, aiming to enhance the study’s accuracy and
alignment with its objectives without compromising reproducibility, cost-efficiency,
or time constraints.

With the parameters defined, the next step is to develop the scripts that will be
used to obtain the experiment data and execute stress tools. Two scripts were used,
one to generate stress load and another to collect data. Algorithm 1 demonstrates the
hardware resource data capture script, and Algorithm 2 demonstrates the workload
generation script.

4 Experimental Design

This study aims to evaluate the resource utilization of serverless applications un-
der various configurations to propose infrastructure setups that maximize resource
efficiency while maintaining performance. A total of 24 scenarios were tested, com-
bining different operating systems, container orchestrators, and workloads. The ex-
periments focused on key metrics such as RAM, CPU, Disk I/O, and Network usage
to identify configurations that balance performance and efficiency effectively.

The testing environment was hosted by the public cloud provider Infonet, which
utilizes VMware virtualization technology. A virtual machine (VM) with 4 vCPUs
running at 2.2 GHz, 8 GB of DDR5 ECC RAM, a 200 GB SSD disk, and a 1 Gb
network card was used. The VM was configured with Ubuntu Server 22.04.3 LTS
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Algorithm 1 Capture Script
Start
SET Network Interfce
SET Container ID
SET Count
CREATE and initialize log files
SET count = 0
while While count ≤ 3600 do

FETCH memory usage (used, free, shared, buffered, available)
FETCH swap usage (used)
FETCH disk usage for “sda2”
FETCH CPU stats (user, system, IO wait, idle) using mpstat
FETCH initial network received and transmitted bytes
WAIT for 1 second
FETCH updated network received and transmitted bytes
CALCULATE received and transmitted differences
FETCH stats for container
FETCH current date and time
WRITE system metrics to logs
INCREMENT count by 1

end

Algorithm 2 Load Script
Start while While ≤ 3600 do

hey -z 1h -c 100 -cpus 12 -m GET “url” ⩾ log.csv
end

and Debian 12.5 as the operating systems. These systems were selected due to their
open-source nature, security, and stability.

For container orchestration, Docker v2.27.0 and Podman v3.4.4 were used to set
up a Kubernetes cluster comprising a control plane and two workers. These clus-
ters ran a serverless HTTP application capable of processing GET and POST re-
quests. Kubernetes v1.28, an open-source orchestration platform, provided an auto-
mated and scalable environment for managing containers. Additionally, the Knative
framework v1.12.3 extended Kubernetes capabilities by simplifying and automating
the deployment and maintenance of serverless applications. Knative employed Ku-
bernetes Custom Resource Definitions (CRDs) to integrate seamlessly with native
Kubernetes resources, supporting the execution of Functions as a Service (FaaS)
workloads.

Docker and Podman, chosen as container orchestrators, differ in their use of con-
tainer daemons; Docker relies on a centralized daemon, while Podman interacts
directly with runC, that in theory increase its performance. This architectural dis-
tinction can influence overhead and potentially affect performance under varying
workloads.

The experimental scenarios assessed various combinations of operating systems
and container orchestrators under low, medium, and high workloads. Low workloads
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simulated 100 users accessing the application simultaneously, medium workloads
simulated 500 users, and high workloads simulated 1000 users. To avoid interfer-
ence between tests, the server was restarted between scenarios. Each scenario was
run for 60 minutes using Hey software, an open-source load-testing tool, to simulate
HTTP GET and POST requests. After configuring Docker or Podman, a Kubernetes
cluster with a control plane and two workers was established, followed by deploying
a web application through Knative for testing.

This experimental design adheres to the ACM Empirical Standards for bench-
marking by employing clearly defined metrics (CPU, RAM, Disk I/O, Network
usage, and response times), consistent experimental conditions (sequential execu-
tion with server restarts), and reproducible methodologies (open-source scripts and
detailed documentation). Statistical analysis, including confidence intervals and per-
centiles, ensures robustness in performance evaluation. The benchmarking scenarios
and workloads align with established best practices in performance testing.

The data collection was automated using scripts, ensuring uniformity and reli-
ability across all scenarios. Statistical measures, such as confidence intervals and
standard deviation, were calculated to validate the results, providing a robust foun-
dation for the conclusions.

Table 1 outlines the scenarios tested, detailing the specific combinations of oper-
ating systems, container orchestrators, HTTP methods, and workloads. This struc-
tured approach aims to propose effective configurations for future serverless infras-
tructure design, offering practical insights for service providers and developers.

Table 1 Experimental Scenarios

OS ORCHESTRATOR METHOD WORKLOADS

Ubuntu Docker Get low/medium/high
Ubuntu Podman Get low/medium/high
Debian Docker Get low/medium/high
Debian Podman Get low/medium/high
Ubuntu Docker Post low/medium/high
Ubuntu Podman Post low/medium/high
Debian Docker Post low/medium/high
Debian Podman Post low/medium/high

5 Results and Discussion

The data collected from the 24 executed scenarios allowed for an in-depth exami-
nation of CPU, RAM, Disk I/O, Network consumption, and Response Time. Con-
fidence Intervals (CI) at a 95% level were calculated to gauge the reliability of the
results, while the Design of Experiments (DoE) approach helped to identify rela-
tionships between variables and optimize scenario selection.
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5.1 Memory and CPU usage

The memory usage analysis (Figure 3) reveals distinct patterns. For instance, Ubuntu
with Podman in the GET method under low load consumed more than 3000 MB of
RAM, surpassing other configurations. In contrast, Ubuntu with Docker consistently
showed lower RAM usage around 2000 MB, suggesting that this combination man-
ages memory more efficiently across both GET and POST methods. At medium
loads, Debian with Podman exhibited higher memory consumption, while Debian
with Docker remained comparatively lower. Under high load conditions, Debian
with Docker demonstrated greater RAM consumption for the GET method, whereas
Debian with Podman showed elevated values for POST requests.

(a) RAM - Ubuntu x Docker (b) RAM - Ubuntu x Podman

(c) RAM - Debian x Docker (d) RAM - Debian x Podman

Fig. 3 Memory usage

CPU usage measurements (Figure 4) indicated that Debian combined with Docker
often achieved lower CPU consumption, particularly at moderate loads, whereas
Ubuntu with Podman sometimes showed CPU utilization above 60% even under
lower load conditions. The POST method generally demanded more CPU than the
GET method, frequently nearing or exceeding 50% utilization. These observations
confirm that container runtime and workload type significantly influence resource
usage.
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(a) CPU - Ubuntu x Docker (b) CPU - Ubuntu x Podman

(c) CPU - Debian x Docker (d) CPU - Debian x Podman

Fig. 4 CPU usage

5.2 Processes and Response Time

The analysis of background processes such as Kubelet, Containerd, Conmon, and
others indicated minimal CPU and RAM consumption (see Tables 2 and 3). Al-
though some SWAP memory usage appeared during peak loads, its magnitude re-
mained low, suggesting that performance was not critically impacted. This stable
behavior aligns well with the expectations of serverless architectures, where auto-
matic scaling and resource provisioning should prevent severe resource shortages.

Table 2 Resources utilization-Proccess Kubelet

Scenario Method CPU (%) RAM (MB) SWAP (MB) VSZ (MB)

Debian x Docker GET 7 1.1 2.8 2258.5
Debian x Docker POST 3 1.4 5.5 2173.2
Debian x Podman GET 4 1 5.6 2481.8
Debian x Podman POST 3 2 3.8 2481.7
Ubuntu x Docker GET 2 1 1 2407.2
Ubuntu x Docker POST 1 1 2.1 2555.6
Ubuntu x Podman GET 4.95 1 23.12 1104.1
Ubuntu x Podman POST 2 1 27.1 2704.2

Response time data (Figure 4) shows that Ubuntu paired with Podman occasion-
ally exceeded a 2-second threshold, which can degrade user experience and po-
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Table 3 Resources utilization-Proccess Containerd

Scenario Method CPU (%) RAM (MB) SWAP (MB) VSZ (MB)

Debian x Docker GET 2 1 7.9 2173.2
Debian x Docker POST 2 1 15.1 3082.6
Debian x Podman GET 4 1 4.5 3428.4
Debian x Podman POST 3 1 6.8 3469.2
Ubuntu x Docker GET 1 1 3.6 2921.9
Ubuntu x Docker POST 2 1 6.7 2615.9
Ubuntu x Podman GET 3 1,5 11.50 3384.1
Ubuntu x Podman POST 2 1 5.6 5568.0

tentially push users toward alternative solutions. Conversely, Ubuntu with Docker
maintained sub-second response times, providing a more responsive environment.
Debian scenarios fell between these extremes, generally sustaining acceptable re-
sponse times but not consistently matching Ubuntu with Docker’s lower latency.

Table 4 Response Time

Scenario Method Time (sec)

Debian x Docker Get 1.033
Debian x Docker Post 0.930
Debian x Podman Get 0.414
Debian x Podman Post 0.448
Ubuntu x Docker Get 0.320
Ubuntu x Docker Post 0.209
Ubuntu x Podman Get 2.730
Ubuntu x Podman Post 1.238

5.3 DoE Analysis

Using the Design of Experiments (DoE) [4] analysis, the data were analyzed to iden-
tify patterns, determine the best configurations and model the relationship between
the collected data.

Figure 5(a) shows that Ubuntu and Docker had lower RAM consumption than
Debian and Podman. Figure 5(b) shows the interaction graph between the Operat-
ing Systems and Container Orchestrators, demonstrating that the Ubuntu x Docker
interaction has lower RAM consumption. Figures 5(c) and 5(d) show the CPU con-
sumption with the Debian and Docker interaction presenting the lowest resource
consumption, despite a small difference between Ubuntu and Docker.
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(a) RAM - DoE (b) RAM - Interaction DOE

(c) CPU - DOE (d) CPU - Interaction DOE

Fig. 5 DoE Analysis

6 Final Remarks

The insights gained from evaluating various OS and container orchestrator con-
figurations highlight that subtle architectural choices can significantly influence
serverless performance. Ubuntu combined with Docker consistently demonstrated
efficient resource usage and low latency, indicating that certain runtime pairings
can yield tangible advantages in environments demanding rapid responses and pre-
dictable scalability. In contrast, Debian paired with Podman exhibited higher over-
head and proved more cumbersome to manage, reflecting how particular combina-
tions may not be well-suited for all operational contexts.

These findings hold broader applicability across diverse scenarios. In latency-
sensitive domains such as financial trading, high-performance computing, or edge
computing, selecting configurations that optimize response times and resource uti-
lization can directly impact throughput and user satisfaction. Similarly, organiza-
tions constrained by cost, compliance requirements, or hardware limitations can
leverage this understanding to deploy serverless infrastructures that strike a mean-
ingful balance between performance and practicality.

Future research may delve deeper into alternative frameworks beyond Knative,
explore emerging technologies like WebAssembly-based serverless platforms, and
consider more complex workloads, including data-intensive or GPU-accelerated
tasks. Additionally, examining infrastructure choices in IoT devices, edge environ-
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ments, and other specialized contexts can refine these insights further. Such ad-
vancements will help guide continuous performance optimization and offer more
granular, informed recommendations, ultimately supporting a broader range of
serverless applications and operational goals.
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