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Abstract. Braids of partitions have been introduced in a theoretical
framework as a generalization of hierarchies of partitions, but practical
guidelines to derive such structures remained an open question. In a
previous work, we proposed a methodology to build a braid of partitions
by experimentally composing cuts extracted from two hierarchies of
partitions, notably paving the way for the hierarchical representation of
multimodal images. However, we did not provide the formal proof that
our proposed methodology was yielding a braid structure. We remedy to
this point in the present paper and give a brief insight on the structural
properties of the resulting braid of partitions.
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1 Introduction

Hierarchical representations are a well suited tool to handle the multi-scale
nature of images, since they allow to encompass all potential scales of interest
in a single structure. The hierarchical representation can be constructued once
and regardless of the application, and its scale of analysis can then be tuned
afterward to comply with the pursued task. The component tree (also called min-
tree and max-tree) [14], the inclusion tree (also called tree of shapes (ToS)) [7],
the α-tree (also called the hierarchy of quasi-flat zones) [16] and the binary
partition tree (BPT) [13] constitute a non-exhaustive list of the most known
hierarchical representations in the mathematical morphology literature. Reviews
can be found in [3,8]. Hierarchical representations have proven to be useful for
many image processing and computer vison tasks, such as image filtering [20]
and simplification [21], image segmentation [11] as well as object recognition [19].
The most common framework is to build and process a single hierarchical repre-
sentation for a given input image. In some cases however, it could be interesting to
associate one image with multiple hierarchical representations (each one focusing
on a particular feature of the image for example), or, on the contrary, to build



a common hierarchical representation for multiple input images (each being a
single modality of a multimodal image for instance). While these largely remain
open questions, some recent works have been devoted to such fusion issues. The
fusion of multiple hierarchical representation is for instance addressed in [5],
where hierarchies of watersheds (see [2]) driven by area and dynamics attributes
are combined through the composition by infimum, supremum or averaging of
their saliency maps. The representation of multimodal images (i.e. several images
acquired over the same scene with different setups, such as different sensor types
or acquisition dates) with a single hierarchical structure is another challenge
studied in the literature [17]. The ToS structure has for instance been extended
to multivariate images in [4], where univariate ToS are first computed for each
individual modality and then further merged into a graph from which is derived
the final multivariate ToS representation (note that a similar idea is presented
in [10] to extend component trees to multivariate images, but the final result is a
graph and no longer a tree-based representation). In [9], a single BPT is built over
a whole video sequence by integrating motion cues during the construction stage,
allowing to perform some object tracking by simply identifying nodes of interest
in the resulting trajectory BPT structure. Another approach for the construction
of a multi-feature BPT has been introduced in [12], where all modalities of the
input multimodal image cooperate in a consensus framework to allow for the
construction of a single tree structure. Finally, braids of partitions were proposed
in [6] as a generalization of hierarchies of partitions for a theoretical standpoint,
and we actually sketched in a previous work [18] the potentiality of such braid
structures to act as suited hierarchical representations of multimodal images.
In [18], we proposed to build the braid structure (and its associated monitor
hierarchy) by experimentally combining cuts extracted from two hierarchies of
partitions, and showed the interest of the resulting structure within the framework
of multimodal image segmentation. However, we did not provide the formal proof
that the proposed methodology yielded a braid structure.
We remedy to this point in this present article, whose organization is as follows:
Section 2 introduces all used notations and formally defines the notions of hi-
erarchies and braids of partitions. Section 3 recalls the construction procedure
introduced in [18] and formally proves that the resulting structure is a braid.
Section 4 gives a few insights on the structural properties of braids obtained with
the presented construction procedure while Section 5 concludes and presents the
perspectives of the actual work.

2 From hierarchies to braids of partitions

2.1 Hierarchies of partitions

Let E be the spatial support of a generic image, i.e., its pixel grid (in which case
E ⊆ Z2 although there is no requirement for E to be discrete in the following). A
partition π of E is a collection of regions {Ri ⊆ E} of E such that Ri∩Rj 6=i = ∅
and

⋃
iRi = E. The set of all possible partitions of E is denoted ΠE . For any

two partitions πi, πj ∈ ΠE , πi ≤ πj when for each region Ri ∈ πi, there exists



π0 π1 π2 π3 = {E}

≤ ≤ ≤

H = {π0 ≤ π1 ≤ π2 ≤ π3} cut π ∈ ΠE(H)

Fig. 1: Example (left) of a hierarchy of partitions H of E, represented as (top)
a sequence of partitions ordered by refinement and (bottom) its corresponding
dendogram. A particular cut π ∈ ΠE(H) is represented with red squared nodes.

a region Rj ∈ πj such that Ri ⊆ Rj . πi is said to refine πj in such case. ΠE

is a complete lattice for the refinement (partial) ordering ≤. In particular, it is
possible to define the refinement supremum πi ∨ πj of two partitions πi and πj
as the smallest partition of ΠE that is refined by both πi and πj .
A hierarchy of partitions H of E is a collection of partitions {πi ∈ ΠE}ni=0

ordered by refinement, that is H = {π0 ≤ π1 ≤ · · · ≤ πn}. π0 is called the
leaf partition (its regions are the leaves of H) and πn = {E} is the root of the
hierarchy. A hierarchy of partitions is often represented as a tree graph (also
called dendogram), where the nodes of the graph correspond to the various
regions contained in the partitions of the sequence, and the vertices denote the
inclusion between these regions. Alternatively, H can be equivalently defined as
a collection of regions H = {R ⊆ E} that satisfy the following 3 properties:

1. ∅ /∈ H, E ∈ H.

2. ∀Ri,Rj ∈ H, Ri ∩ Rj ∈ {∅,Ri,Rj}. Any two regions belonging to H are
either disjoint or nested.

3. ∀R ∈ H,R 6∈ π0 ⇒ R =
⋃
r∈π0
{r |r ⊂ R}. Any non leaf region R is exactly

recovered by the union of all leaves of H that are included in R.

Note that considering only items 1 and 2 allows to define tree-based representa-
tions such as the ToS, but item 3 is mandatory to define hierarchies or partitions.
A cut of H is a partition π of E whose regions belong to H. The set of all cuts of
a hierarchy H is denoted ΠE(H), and is a sub-lattice of ΠE . All those notions
related to hierarchies of partitions are summarized by Figure 1.

2.2 Braids of partitions

Braids of partitions have been introduced in [6] as a more general structure than
hierarchies of partitions, and are defined as follows:



π1 π2 π3

π1 ∨ π2 π1 ∨ π3 π2 ∨ π3

Fig. 2: Example of braid of partitions B = {π1, π2, π3}. On the right is a monitor
hierarchy of B since the pairwise refinement suprema πi ∨πj , i, j ∈ {1, 2, 3}, i 6= j
define cuts of this hierarchy different from the whole space E.

Definition 1 (Braid of partitions). A family of partitions B = {πi ∈ ΠE} is
called a braid of partitions whenever there exists some hierarchy of partitions Hm

such that:

∀πi, πj ∈ B, πi ∨ πj 6=i ∈ ΠE(Hm)\{E} (1)

Braids of partitions generalize hierarchies of partitions in the sense that the
refinement ordering between the partitions composing the braid no longer needs
to exist. However, there must exist some hierarchy of partition Hm, called the
monitor hierarchy, such that the refinement supremum of any two partitions in
the braid defines a cut of this hierarchy Hm. It is also worth noting that this
refinement supremum must differ from the whole space {E}. Otherwise, any
family of arbitrary partitions would form a braid with {E} as a supremum, thus
loosing any interesting structure. An example of braid of partitions B composed
of three partitions B = {π1, π2, π3} as well as one possible monitor hierarchy Hm

of B are displayed by Figure 2.
As we pointed out in our previous work [18], the structure of a braid B and its
monitor hierarchy Hm are particulary suited for the hierarchical representation
of multimodal images. As it can be observed in Figure 2, the monitor hierarchy
Hm encodes all regions that are common to at least two different partitions
contained in B. Assuming that the partitions composing B originate from different
modalities, Hm encodes in a hierarchical manner the information that is shared
by those modalities. On the other hand, all regions contained in B but not in
Hm belong to a single modality, and are thus responsible for some exclusive
information. Jointly considering the braid B and its monitor hierarchy Hm

therefore leads to a hierarchical representation of the multimodal image that
relies both on the complementary and redundant information contained in the
data.



πa πb

'h

Fig. 3: Illustration of the h-equivalence relation: πa and πb are h-equivalent (left),
they define two different cuts of the same hierarchy (right).

2.3 The h-equivalence as starting point to compose a braid

As pointed out in [6], two issues arise when working with braids of partitions:

– validating that a given family of partitions has a braid structure (that is,
equation (1) is satisfied).

– defining general procedures that generate braids of partitions.

It is straightforward to compose a braid using a single hierarchy since the
supremum of two cuts of a hierarchy also defines a cut of this hierarchy. For this
reason, any set of cuts coming from a single hierarchy is a braid of partitions.
However, this guarantee is lost when one wants to compose a braid from cuts
coming from multiple hierarchies, or, even further, with arbitrary partitions (note
in that respect that, although tempting to think so, the family of partitions
generated by the stochastic watershed [1] has not a braid structure in general).
As a matter of fact, all those cuts must be sufficiently related so their pairwise
refinement suprema define cuts of the same monitor hierarchy Hm. To analyze
the relationships which must be holding between the cuts of various hierarchies
to form a braid, we introduced in [18] the property of h-equivalence (h standing
for hierarchical):

Definition 2 (h-equivalence). Two partitions πa and πb are said to be h-
equivalent, and one notes πa 'h πb if and only if

∀Ra ∈ πa, ∀Rb ∈ πb,Ra ∩Rb ∈ {∅,Ra,Rb}. (2)

In other words, a region in πa either refines or is a refinement of a region in πb.
Partitions πa and πb may not be globally comparable for the refinement ordering,
but they locally are, as displayed by Figure 3. Obviously, if πa ≤ πb or πa ≥ πb,
then πa 'h πb. All cuts of a hierarchy H are h-equivalent: ∀π1, π2 ∈ ΠE(H),
π1 'h π2. Conversely, if two partitions are h-equivalent, they define two cuts of the
same hierarchy. Despite a somewhat misleading name, 'h is not an equivalence
relation but only a tolerance relation: it is reflexive and symmetric but not
transitive in general.
Following, we aim to build a braid B using cuts extracted from several hierarchical
representations. To do so, we must investigate what kind of relationship must



be holding between those cuts in order to guarantee the braid structure (that is,
equation (1) is satisfied. Let the family of partitions B = {πi ∈ ΠE} be a braid,
and let Hm be a monitor hierarchy of B.

Proposition 1. If there exist πi, πj ∈ B such that πi ≤ πj, then πj ∈ ΠE(Hm).

Proof. As πi ≤ πj , it follows that πi ∨ πj = πj . And from the definition (1) of a
braid, πi ∨ πj ∈ ΠE(Hm), so πj ∈ ΠE(Hm). ut

Thus, if the braid B has two partitions ordered by refinement (two cuts extracted
from the same hierarchy for instance), the coarest of them also belongs to the
set of cuts ΠE(Hm) of the monitor hierarchy Hm.

Proposition 2. If there exist πi, πj , πk, πl ∈ B such that πi ≤ πj and πk ≤ πl,
then πj 'h πl.

Proof. Using Proposition (1) for both πi ≤ πj and πk ≤ πl, it follows that
πj , πl ∈ ΠE(Hm). Thus πj 'h πl using the property of h-equivalence. ut

Therefore, if the braid B has two pairs partitions ordered by refinement, the
coarest of both pairs are necessarily h-equivalent to each other since they both
belong to the set of cuts ΠE(Hm) of the monitor hierarchy Hm.

3 The braid construction procedure

Given some hierarchy H and a partition π∗ ∈ ΠE , we denote by H'h(π∗) the
set of cuts of H that are h-equivalent to π∗: H

'h(π∗) ⊆ ΠE(H) with equality if
and only if π∗ ∈ ΠE(H). Similarly, we denote by H≤(π∗) the set of cuts of H
that are a refinement of π∗.
Now, let H1 and H2 be two hierarchies of partitions built over the same space E.
We aim to extract two cuts π1

i , π
2
i ∈ ΠE(Hi) from each of those two hierarchies

Hi, i ∈ {1, 2} in order for the family B = {π1
1 , π

2
1 , π

1
2 , π

2
2} to be a braid. For this

purpose, we propose the following iterative procedure:

1. First select arbitrarily some cut π1
1 ∈ ΠE(H1).

2. Then choose a cut π1
2 in the constrained set H2

'h(π1
1)\{E}, that is, a cut

from H2 which is h-equivalent to π1
1 and different from the whole space {E}.

3. Finally, complete by taking a cut in each hierarchy that is a refinement of the
cut previously extracted from the other hierarchy, that is π2

i ∈ ΠE(Hi), i ∈
{1, 2} such that π2

1 ≤ π1
2 and π2

2 ≤ π1
1 .

This procedure is summarized by Figure 4.

Proposition 3. Under this configuration, B = {π1
1 , π

2
1 , π

1
2 , π

2
2} has a braid struc-

ture.



H1

π1
1 ∈ ΠE(H1) π1

2 ∈ ΠE(H2) s.t π1
2 'h π

1
1

π2
1 ∈ ΠE(H1) s.t π2

1 ≤ π1
2 π2

2 ∈ ΠE(H2) s.t π2
2 ≤ π1

1

B = {π1
1 , π

2
1 , π

1
2 , π

2
2}

Step 1 Step 2

Step 3

H2

Fig. 4: Composing a braid B with cuts from two hierarchies H1 and H2.

Proof. Let B = {π1
1 , π

2
1 , π

1
2 , π

2
2} be a family of partitions composed following the

previously described procedure, and let πk,li,j = πki ∨ πlj denote the pairwise refine-
ment suprema of partitions in B. In particular, the 4 partitions composing B gener-

ates

(
4

2

)
= 6 different pairwise refinement suprema π1,2

1,1 , π
1,1
1,2 , π

1,2
1,2 , π

2,1
1,2 , π

2,2
1,2 , π

1,2
2,2 .

Checking that B is a braid amounts to verify whether the πk,li,j all defines cuts of
the same monitor hierarchy Hm, which is equivalent to showing that they are
(at least) all h-equivalent to each other. In order to show the braid structure of
B, we first demonstrate the following result:

Lemma 1. Let π1, π2, π3 ∈ ΠE be some partitions of E such that π1 'h π3 and
π2 ≤ π3. Then π1 ∨ π2 'h π3.

Proof. If π1 ≤ π3, then π1 ∨ π2 ≤ π3 by definition of the refinement supremum,
and so π1 ∨ π2 'h π3 since any two ordered partitions are also h-equivalent.
On the other hand, if π1 ≥ π3, then π1 ≥ π2, hence π1 ∨ π2 = π1 and so
π1 ∨ π2 'h π3 for the same reason as above.
In the most general case where π1 and π3 are h-equivalent but can nonetheless
not be ordered, it means that π1 is a refinement of π3 in some parts of E, and is
refined by π3 in the other parts. In the former case, let R3 be a region of π3 and
π1(R3), π2(R3) be the refinements (partial partitions) of R3 in π1 and π2. Then,
π1(R3) ∨ π2(R3) is also a refinement of R3, implying that π1 ∨ π2 refines π3 in
the part of E covered by R3. In the case where π3 is locally a refinement of π1,
then given R1 ∈ π1, there exists a refinement π3(R1) of R1 in π3, and therefore a
refinement π2(R1) of R1 in π2 since π2 ≤ π3. Therefore, {R1} ∨ π2(R1) = {R1}
and thus π3 refines π1 ∨π2 in the part of E covered by R1. Finally, π1 ∨π2 either
refines or is refined by π3 in all parts of E, hence π1 ∨ π2 'h π3. ut
To ease the reading of the proof of Proposition (3), we first recall the relations
holding between the various partitions composing the braid B:

- π1
1 'h π1

2 by construction.
- π2

1 ≤ π1
2 and π2

2 ≤ π1
1 by construction.

- π1
1 'h π2

1 beacuse they are both cuts of the same hierarchy H1. Similarly,
π1
2 'h π2

2 .



Following, we prove that all the pairwise refinement suprema of B are at least
all h-equivalent to each other. Their relationships are summarized in table 1.

Table 1: Summary of the relationships holding between all pairwise refinement
suprema of B with their corresponding item in the proof.

π1,2
1,1 π1,1

1,2 π1,2
1,2 π2,1

1,2 π2,2
1,2 π1,2

2,2

π1,2
1,1 X 1. ≤ 2. ≤ 3. 'h 4. ≤ 5. 'h

π1,1
1,2 X 6. ≤ 7. ≤ 8. ≤ 9. ≤

π1,2
1,2 X 10. 'h 11. 'h 12. 'h

π2,1
1,2 X 13. 'h 14. ≤

π2,2
1,2 X 15. ≤

π1,2
2,2 X

1. π1,2
1,1 = π1

1 ∨ π2
1 . As π2

1 ≤ π1
2 by construction of B, it follows that π1

1 ∨ π2
1 ≤

π1
1 ∨ π1

2 , hence π1,2
1,1 ≤ π1,1

1,2 .

2. π1,2
1,2 = π1

1 ∨ π2
2 = π1

1 as π2
2 ≤ π1

1 by construction of B. By property of the

refinement supremum, one has π1
1 ≤ π1

1 ∨ π2
1 = π1,2

1,1 , hence π1,2
1,2 ≤ π1,2

1,1 .

3. By construction of B, one has π1
1 'h π1

2 and π2
1 ≤ π1

2 = π2,1
1,2 . Using lemma 1,

it follows that π1
1 ∨ π2

1 = π1,2
1,1 'h π2,1

1,2 .

4. π2
2 ≤ π1

1 by construction of B, meaning that π2
1 ∨ π2

2 ≤ π2
1 ∨ π1

1 , hence
π2,2
1,2 ≤ π1,2

1,1 .

5. Using item 3, we first have π1,2
1,1 'h π1

2 = π2,1
1,2 . In addition, π2

2 ≤ π1
1 by

construction of B, implying that π2
2 ≤ π1

1 ∨ π2
1 = π1,2

1,1 . Using lemma 1 finally

leads to π1,2
1,1 'h π1,2

2,2 .

6. π1,2
1,2 = π1

1 as π2
2 ≤ π1

1 by construction of B. The basic property of the

refinement supremum allows to conclude that π1
1 ≤ π1

1 ∨π1
2 , hence π1,2

1,2 ≤ π1,1
1,2 .

7. The exact same reasoning as item 6 applied to π2,1
1,2 = π1

2 leads to π2,1
1,2 ≤ π1,1

1,2 .

8. π2
1 ≤ π1

2 and π2
2 ≤ π1

1 , both by construction of B. It immediately follows that
π2
1 ∨ π2

2 ≤ π1
1 ∨ π1

2 , hence π2,2
1,2 ≤ π1,1

1,2 .

9. The same reasoning as item 1 applies to π1,2
2,2 = π1

2∨π2
2 , leading to π1,2

2,2 ≤ π1,1
1,2 .

10. By construction of B, one has π1
1 = π1,2

1,2 'h π2,1
1,2 = π1

2 , hence the result.

11. π1,2
1,2 = π1

1 as π2
2 ≤ π1

1 by construction of B. In addition, π1
1 'h π2

1 as they
are both cuts of the same hierarchy H1. Using lemma 1, it follows that
π1
1 = π1,2

1,2 'h π2,2
1,2 = π2

1 ∨ π2
2 .

12. The same reasoning as item 3 applies to π1,2
2,2 and π1,2

1,2 = π1
1 and, relying upon

lemma 1, leads to π1,2
1,2 'h π1,2

2,2 .



(a) (b)

Fig. 5: (a) RGB modality and (b) Depth map of a RGB/Depth multimodal image
from the Middlebury Stereo Dataset.

13. The same reasoning as item 11 applies to π2,1
1,2 = π1

2 and π2,2
1,2 , leading to

π2,1
1,2 'h π2,2

1,2 .

14. The same reasoning as item 2 applies to π1,2
2,2 and π2,1

1,2 = π1
2 , leading to

π2,1
1,2 ≤ π1,2

2,2 .

15. The same reasoning as item 4 applies to π2,2
1,2 and π1,2

2,2 , leading to π2,2
1,2 ≤ π1,2

2,2 .

Finally, all the pairwise refinement supremum πk,li,j = πki ∨ πlj that can be formed
using the partitions belonging to B are (at least) all h-equivalent to each other.

Therefore, there exists some hierarchy Hm such that all πk,li,j ∈ ΠE(Hm), which
proves that B has a braid structure when constructed following the proposed
procedure. ut

4 A quick look into the braid structure

The braid construction procedure presented in Section 3 and summarized by
Figure 4 is only operable when two cuts are extracted from two hierarchies of
partitions. While this may appear quite restrictive from an applicative point
of view, we are up to now only able to provide the proposed procedure in this
context. As a matter of fact, the braid structure is guaranteed whenever the
refinement suprema of all partitions composing the braid are all h-equivalent to
each other, but some additional efforts are still needed to understand how this
h-equivalence constraint can be formulated as a constraint on the partitions of
the braid.
In order to give a brief insight on the structural properties of the braid of
partitions and its monitor hierarchy when the proposed procedure is applied
on a real multimodal scenario, we consider the RGB/Depth multimodal image
presented by Figure 5, originating from the 2014 database of the Middlebury
Stereo Dataset [15]. Both modalities are co-registred and comprise 400 × 300
pixels.
The two hierarchies of partitions H1 and H2 are obtained by means of two
BPTs [13] with standard parameters (mean value for the region model and
Euclidean distance for the merging criterion). We use the same initial partition



Table 2: Number of regions NbReg in all partitions composing the braid B when
the first cut is extracted from H1 built on RGB modality.

π1
1 10 20 50 100 200 500 1000

π1
2 'h π1

1 544 822 1095 1267 1415 1609 1684

π2
1 ≤ π1

2 1358 1527 1680 1750 1800 1860 1876

π2
2 ≤ π1

1 544 822 1095 1267 1415 1620 1801

Table 3: Number of regions NbReg in all partitions composing the braid B when
the first cut is extracted from H1 built on Depth modality.

π1
1 10 20 50 100 200 500 1000

π1
2 'h π1

1 633 829 994 1138 1315 1569 1699

π2
1 ≤ π1

2 1530 1612 1657 1707 1785 1864 1865

π2
2 ≤ π1

1 633 829 994 1138 1315 1578 1824

for both BPTs, namely the intersection of two mean shift clustering procedures
ran independently on each modality (yielding a total of 2148 leaf regions). The
first cut π1

1 is extracted from H1 as the partition composed of the NbReg last
regions before completion of the region merging process of the BPT. It defines
the extraction of the three remaining cuts π2

1 , π
1
2 , π

2
2 through the application

of the procedure presented in Section 3 as follows: π1
2 =

∨{H2
'h(π1

1)\{E}},
π2
1 =

∨{H1
≤(π1

2)} and π2
2 =

∨{H2
≤(π1

1)}. The three constrained set of cuts
H2
'h(π1

1)\{E}, H1
≤(π1

2) and H2
≤(π1

1) are non empty since both hierarchies
H1 and H2 have the same leaf partition (all three sets thus contain at least
the leaf partition). We set NbReg (that is, the number of regions in π1

1) to
10, 20, 50, 100, 200, 500 and 1000. Tables 2 and 3 give the number of regions
composing partitions π2

1 , π
1
2 and π2

2 when H1 is the BPT built on the RGB and
Depth modality, respectively. As it can be seen, there is in both cases a big gap
between the number of regions in π1

1 and π1
2 . Even though π1

2 is defined to be
h-equivalent to π1

1 , it turns out in practice to be a refinement of π1
1 since π2

2 ≤ π1
1

has the same number of regions as π1
2 (except for NbReg = 500, 1000). The reason

is that when π1
1 has a relatively small number of regions, there are no regions

in H2 that are refined by those of π1
1 , hence the largest cut in H2

'h(π1
1)\{E} is

equivalent to the one in H2
≤(π1

1). There is an equivalently big gap between the
number of regions in π1

2 and π2
1 . While this can be explained by the fact that

π2
1 is defined as a refinement of π1

2 , it also means that it is very difficult to find
“intermediary” regions in H1 (that is, regions that are not close from the root or
the leaves of H1, and that are more likely to be associated with semantic objects
in the image) that correspond to those in H2. While this is out of the scope of
this paper, this interpretation might be a potential issue in a practical scenario of
braid-based hierarchical representation of multimodal images and will be further
investigated.
Regarding the influence of the hierarchy from which is extracted the first cut



π1
1 , it can be appreciated by comparing Table 2 and Table 3 that the proposed

procedure yields cuts π2
1 , π

1
2 and π2

2 whose number of regions remains relatively
stable whether H1 was defined to be the BPT constructed on the RGB modality
or the Depth modality. This observation will have to be validated with more
in-depth experiments, and the influence of the choice of the modality associated
with H1 on practical image processing tasks (such as segmentation or object
recognition) will also need to be evaluated (since the semantic content of those
regions will depend on the identity of the modality associated with H1 and H2).
It could also be interesting to study whether the number of regions NbReg of
the first partition π1

1 can vary within a given range of values without impacting
the structure of the monitor hierarchy. Similarly, the influence of the choice of
π2
1 , π1

2 and π2
2 in their respective constrained sets of cuts will also have to be

investigated. While these considerations are probably data dependent, they could
nevertheless give a deeper insight on the stability of the braid structure generated
by the proposed procedure.

5 Conclusion

Braids of partitions were defined as a generalization of hierarchies of partitions,
in the sense that all partitions composing the braid do not need to be ordered by
refinement. This more permissive property opens the door to potentially several
applications of interest for the braid structure, but it also brings difficulties to
build such structure in practice. In our previous work [18], we experimentally
provided a procedure to build a braid of partitions as a combination of cuts coming
from hierachies, and intuited the potential of braids to perform multimodal image
segmentation.
In this paper, we formally demonstrated that the procedure proposed in [18] was
indeed yielding a braid of partitions. While we did not focus here on a more
thorough evaluation of the usefulness of the braid structure for multimodal image
analysis, this is obviously an important future research avenue. In addition, we are
up to now bound to build a braid by using only two hierarchies of partitions, and
two cuts per hierarchy. In that respect, future work will investigate theoretical
aspects related to the construction of the braid of partitions, namely how to
extract more cuts coming from various hierarchies and still maintain the braid
structure.
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