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ABSTRACT

Hierarchical data representations are powerful tools to analyze images and have found numerous
applications in image processing. When it comes to multimodal images however, the fusion of multiple
hierarchies remains an open question. Recently, the concept of braids of partitions has been proposed
as a theoretical tool and possible solution to this issue. In this paper, we demonstrate the relevance
of the braid structure for the hierarchical representation of multimodal images. We first propose a
fully operable procedure to build a braid of partitions from two hierarchical representations. We then
derive a framework for multimodal image segmentation, relying on an energetic minimization scheme
conducted on the braid structure. The proposed approach is investigated on different multimodal images
scenarios, and the obtained results confirm its ability to efficiently handle the multimodal information
to produce more accurate segmentation outputs.

1. Introduction

The notion of scale of analysis is a key paradigm in image
processing. A given image can be analyzed at different scales,
i.e., different levels of details, depending on the pursued goal.
For low-level applications such as image denoising, algorithms
mostly work at very fine scales, where objects of interest are
either defined as pixels or small groups of pixels. On the other
hand, high-level image understanding and simplification applica-
tions such as object recognition or image segmentation focus on
coarser scales of analysis, where the handled objects of interest
are defined as large groups of pixels conveying some semantic
meaning. Hierarchical representations are a well suited tool
to handle this multi-scale nature of images, since they allow
to encompass all potential scales of interest in a single struc-
ture. The hierarchical representation can be constructued once
and regardless of the application, and its scale of analysis can
then be tuned afterward to comply with the pursued task. The
component tree (also called min-tree and max-tree) [1], the in-
clusion tree (also called tree of shapes (ToS)) [2], the α-tree
(also called the hierarchy of quasi-flat zones) [3] and the binary
partition tree (BPT) [4] constitute a non-exhaustive list of the
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most known hierarchical representations in the mathematical
morphology literature. Reviews can be found in [5; 6]. Hi-
erarchical representations have proven to be useful for many
image processing and computer vison tasks of various scales
of analysis, such as image filtering [7; 8] and simplification [9],
image segmentation [10; 11] as well as object detection [12] and
recognition [13].
The most common framework for a given input image is to build
and process a single hierarchical representation. In some cases
however, it could be interesting to associate one image with
multiple hierarchical representations (each one focusing on a
particular feature of the image for example), or, on the contrary,
to build a common hierarchical representation for multiple input
images. While these largely remain open questions, some recent
works have been devoted to such fusion issues. The fusion of
multiple hierarchical representation constructed on a single im-
age is for instance addressed in [14; 15], where hierarchies of
watersheds (see [16]) driven by area and dynamics attributes are
combined through the composition by infimum, supremum or
averaging of their saliency maps. The representation of multi-
modal images (i.e. several images acquired over the same scene
with different setups, such as different sensor types or acquisi-
tion dates) [17] within a single hierarchical structure is another
challenge studied in the literature [18]. By ensuring a more
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complete and accurate representation of the recorded source,
as they consider several single acquisitions of it, multimodal
images are nowadays increasingly used in image processing.
However, jointly integrating the redundant and complementary
information featured by the various modalities in a hierarchical
representation in generic manner is an arduous task, as it de-
pends both on the nature of the handled multimodality as well
as the underlying application.
Some works have been devoted to this challenging issue. The
ToS structure has for instance been extended to multivariate
images in [19], where univariate ToS are first computed for each
individual modality and then further merged into a graph from
which is derived the final multivariate ToS representation (note
that a similar idea is presented in [20] to extend component
trees to multivariate images, but the final result is a graph and
no longer a tree-based representation). In [21], a single BPT is
built over a whole video sequence by integrating motion cues
during the construction stage, allowing to perform some object
tracking by simply identifying nodes of interest in the resulting
trajectory BPT structure. Another approach for the construction
of a multi-feature BPT has been introduced in [22; 23], where
all modalities of the input multimodal image cooperate in a con-
sensus framework to allow for the construction of a single tree
structure. Finally, braids of partitions were proposed in [24]
as a generalization of hierarchies of partitions for a theoretical
standpoint, and we actually sketched in a previous work [25] the
potentiality of such braid structures to act as suited hierarchical
representations of multimodal images. In [25], we proposed to
build the braid structure (and its associated monitor hierarchy)
by experimentally combining cuts extracted from two hierar-
chies of partitions, and showed the interest of the resulting struc-
ture within the framework of multimodal image segmentation.
Here, we extend those preliminary results by defining a complete
methodology for the hierarchical representation and segmenta-
tion of multimodal images. More precisely, we complete our
previous work [25] in the following aspects:

1. We provide the formal proof that the proposed method-
ology to build the braid structure from two hierarchical
representation mathematically satisfies the definition of the
braid structure.

2. We demonstrate the relevance of the obtained braid struc-
ture for multimodal image representation by integrating it
into a more general multimodal image segmentation frame-
work. We benchmark this latter framework on two different
multimodal datasets1.

3. We conduct a sensibility analysis to the two key parame-
ters that have to be tuned in order to operate the proposed
multimodal image segmentation framework.

Note that the segmentation application should be taken as a proof
of concept to demonstrate the soundness of the proposed braid
framework and its adaptability to different multimodal scenar-
ios with their respective specificities, and not as an attempt to
outperform state-of-the-art multimodal segmentation techniques
specialized in the segmentation of a particular multimodality.

1One is presented in the supplementary materials available from page 13.

The remainder of this paper is organized as follows: Section 2 in-
troduces various definitions and properties related to hierarchical
representations and hierarchical energy minimization procedures.
Section 3 presents the concept of braids of partitions proposed
by [24] and extends the classical energetic framework on these
particular structures. Section 4 details the main contributions
of this paper as stated above, while Section 5 shows the appli-
cation of this methodology and discusses the obtained results.
Conclusion and future work are drawn in Section 6.

2. Hierarchies of partitions

2.1. Hierarchies of partitions

Let I : E → V be a generic image of elements (pixels) xi ∈ E
belonging to the support space E of the image, i.e., its pixel
grid (in which case E ⊆ Z2 although there is no requirement for
E to be discrete in the following), and of pixel values I(xi) ∈
V ⊆ Rn. Following this definition, a P−multimodal image IP

is characterized by the joint composition of its P modalities
{I1, . . . ,IP}, with Ii : Ei → Vi, i = 1, . . . P. Although each
domain Ei could be different for the various modalities, we
restrict here to the case where all the modalities share the same
domain E1 = · · · = EP ≡ E, implying that all modalities are
co-registered. On the other hand, all sets Vi are not restricted to
be the same, and can be of different dimensionality.
A region R ⊆ E is some (non necessarily connected) subset of
E. A partition π of E is a collection of regions {Ri ⊆ E} of E
such that Ri ∩ R j,i = ∅ and

⋃
i Ri = E. The set of all possible

partitions of E is denoted ΠE . The words segmentation and
partition are used interchangeably in the following.
For any two partitions πi, π j ∈ ΠE , πi ≤ π j when for each region
Ri ∈ πi, there exists a region R j ∈ π j such that Ri ⊆ R j. πi is
said to refine π j in such case. ΠE is a complete lattice for the
refinement (partial) ordering ≤. In particular, it is possible to
define the refinement supremum πi ∨ π j of two partitions πi and
π j as the lowest partition of ΠE that is refined by both πi and π j,
and the refinement infimum πi ∧ π j as the greatest partition that
refines both πi and π j.
A hierarchy of partitions H of E is a collection of partitions {πi ∈

ΠE}
n
i=0 ordered by refinement, that is H = {π0 ≤ π1 ≤ · · · ≤ πn}.

π0 is called the leaf partition (its regions are the leaves of H) and
πn = {E} is the root of the hierarchy. A hierarchy of partitions
is often represented as a tree graph (also called dendogram),
where the nodes of the graph correspond to the various regions
contained in the partitions of the sequence, and the vertices
denote the inclusion between these regions. Alternatively, H can
be equivalently defined as a collection of regions H = {R ⊆ E}
that satisfy the following 3 properties:

1. ∅ < H, E ∈ H.
2. ∀Ri,R j ∈ H, Ri ∩ R j ∈ {∅,Ri,R j}. Any two regions be-

longing to H are either disjoint or nested.
3. ∀R ∈ H,R < π0 ⇒ R =

⋃
r∈π0
{r |r ⊂ R}. Any non leaf

region R is exactly recovered by the union of all leaves of
H that are included in R.

Considering only items 1 and 2 allows to define tree-based
representations such as the ToS, but item 3 is mandatory to
define hierarchies or partitions.
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Fig. 1: Summary of presented notions related to hierarchies of partitions.

A (pruning) cut of H is a partition π of E whose regions belong
to H, and ΠE(H) denotes the set of all such cuts. H(R) stands
for the sub-hierarchy of H rooted at R. Any cut of the sub-
hierarchy H(R) is called a partial partition of R following [26],
and is denoted π(R). Figure 1 illustrates those notions related to
hierarchies of partitions.

2.2. Hierarchical energy minimization

Many image processing algorithms can be formulated in a
framework where some objective (also called energy) function
is minimized, and the resulting minimizer defines the sought
result. This is for instance the case for segmentation purposes,
where many algorithms seeks the best partitioning of the image
with respect to some criterion (for instance, region homogeneity)
and under some potential constraints (an upper bound on the
total number of regions composing the partition for example).
Well-known segmentation algorithms formulated as energy min-
imization processes include the Mumford-Shah functional [27],
graph cuts [28] or Markov random fields [29].
In the following, an energy function will be defined as a map-
ping E : ΠE → R+ that associates to each partition π ∈ ΠE a
real positive number E(π). More specifically, the energy of a
partition π can be expressed as some particular composition of
the energies of the regions composing the partition:

E(π) = D
Ri∈π
E(Ri), (1)

where D is a composition rule to explicit the relationship be-
tween the energy of the partition π and those of its regions Ri ∈ π.
While D can be arbitrarily defined, the sum composition (i.e.
E(π) =

∑
Ri∈π E(Ri)) is the option that is classically adopted in

practice. However, the minimization of such energy functions
over the whole set of partitions ΠE is particularly complicated
due to the huge cardinality of ΠE . Hierarchies of partitions, by
restraining the space of possible partitions, are an appealing tool
to minimize the energy on.
Given some hierarchy of partitions H and some energy E, the
cut of H that is minimal (i.e., optimal) with respect to the energy
E is defined as:

π? = argmin
π∈ΠE (H)

E(π). (2)

Note that this definition does not guarantee the uniqueness of the
optimal cut, as several cuts could equally minimize the energy.
For the sake of readability, the optimal cut will imply the largest
of all optimal cuts in the following. The combinatorics of trees
makes the exhaustive search of the optimal cut π? non tractable
in practice. To overcome this issue, conditions that have to
be satisfied by E to ease the retrieval of the optimal cut were
formally investigated for the first time in [30] in the context
of separable energies (i.e., D ≡

∑
) and later on generalized

in [31; 32] to wider classes of composition rules D, namely
h-increasing energies. In that case, the optimal cut of H can
be found by solving for each node R the following dynamic
program:

E?(R) = min
{
E(R),E

( ⊔
r∈S(R)

π?(r)
)}

(3)

π?(R) = argmin
{
E(R),E

( ⊔
r∈S(R)

π?(r)
)}

(4)

with t denoting disjoint union (concatenation) and S(R) being
the set of children nodes of R. The optimal cut of R is given
by comparing the proper energy of R and the energy of the
disjoint union of the optimal partial cuts of its children, and by
picking the smallest of the two. The optimal cut of the whole
hierarchy is the one of the root node, and is reached by scanning
all nodes in the hierarchy in one ascending pass [30]. It was
shown in [24] that all energies which can be expressed as a
Minkowski expression:

E(π) =

∑
R∈π

E(R)α


1
α

(5)

are h-increasing for every α ∈ [−∞,+∞], generalizing pre-
viously obtained results for energies composed by the sum
(α = 1) [30; 4], the supremum (α = +∞) [33] and the infimum
(α = −∞) [34], notably. Thus, the optimal cut of a hierarchy for
any type of Minkowski-composed energy function can be easily
retrieved following equations (3) and (4).
Energies in the literature often depend in practice on a positive
real-valued parameter λ that acts as a trade-off between simplic-
ity and a good data fitting of the segmentation. In that context,
there is no longer one optimal cut π? for a given hierarchy H and
some energy Eλ parametrized by λ, but rather a family of them
{π?λ } in turn indexed by this parameter λ. It was shown in particu-
lar in [32] that under the assumption of scale-increasingness for
Eλ, the family {π?λ } of optimal cuts can be ordered by refinement,
that is

λ1 ≤ λ2 ⇒ π?λ1
≤ π?λ2

. (6)
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π1 π2 π3

π1 ∨ π2 π1 ∨ π3 π2 ∨ π3

Fig. 2: Example of braid of partitions B = {π1, π2, π3}. On the right is a monitor
hierarchy of B since the pairwise refinement suprema πi∨π j, i, j ∈ {1, 2, 3}, i , j
define cuts of this hierarchy different from the whole space E.

This property notably allows to transform some hierarchy H into
its persistent version H?, composed of all the optimal cuts π?λ
of H when λ spans R+. The reader is referred to [30] for more
practical implementation details.

3. Braids of partitions

3.1. Definition of a braid
The analysis of a multimodal image by means of a hierarchical

representation inevitably raises the question of the optimal ex-
ploitation of both the redundant and complementary information
contained in the various modalities. Braids of partitions have
been recently introduced in [24] as a potential tool to combine
multiple hierarchies and thus precisely answer this question [25].
Braids of partitions are defined as follows:

Definition 1 (Braid of partitions). A family of partitions B =

{πi ∈ ΠE} is called a braid of partitions whenever there exists
some hierarchy Hm, called monitor hierarchy, such that:

∀ πi, π j ∈ B, πi ∨ π j,i ∈ ΠE(Hm)\{E} (7)

Braids of partitions generalize hierarchies of partitions in the
sense that the refinement ordering between the partitions com-
posing the braid no longer needs to exist, as long as all their
pairwise refinement suprema are hierarchically organized. It
is also worth noting that those refinement suprema must differ
from the whole image {E} in (7). Otherwise, any family of ar-
bitrary partitions would form a braid with {E} as a supremum,
thus loosing any interesting structure. An example of braid is
displayed by Figure 2.
The structure of a braid of partitions B, along with its monitor
hierarchy Hm, appears well suited for the hierarchical represen-
tation of multimodal images. As it can be observed in Figure 2,
the monitor hierarchy Hm encodes all regions that are common
to at least two different partitions contained in B. Assuming that
these partitions originate from different modalities, the monitor
hierarchy therefore expresses regions that are salient across the
modalities, at various scales. In other word, the monitor hierar-
chy can be seen as a representation of the redundant information
contained in the multimodal image. On the other hand, the
family B exhibits the complementary information: all regions
contained in B but not in Hm belong to a single modality, and
can thus be considered as complementary information. Jointly
considering the braid B and its monitor hierarchy Hm therefore

R

R1 R2 R3

R1

R2
R3

π1(R) π2(R)

π3(R) π4(R)
B ={ }

E?(R) = min

{
E(R), E

( ⊔

i=1,2,3

π?(Ri)

)
,
∧

πi(R)∈B
E(πi(R))

}

Fig. 3: A step of the dynamic program (8) applied to a braid structure: one has
to choose between {R},

⊔
π?(Ri) or any other πi(R) for πi ∈ B. Note however

that R , E, otherwise B would not be a braid since π3(R) ∨ π4(R) = R.

leads to hierarchical representation of the multimodal image that
relies both on the complementary and redundant information
contained in the data.

3.2. Minimizing an energy function over a braid
While any two regions belonging to a braid of partitions may

no longer be either disjoint or nested, as it is the case for hi-
erarchies of partitions, it was shown in [24] that the dynamic
program structure holding on hierarchies (equations (3) and (4))
remains valid, with however a slight modification. In particular,
the optimal cut of a braid is reached by solving the following
dynamic program for every node R of the monitor hierarchy Hm:

E?(R) = min
{
E(R),E

( ⊔
r∈S(R)

π?(r)
)
,
∧
πi∈B

E(πi(R))
}

(8)

π?(R) =



{R} if E?(R) = E(R)⊔
r∈S(R)

π?(r) if E?(R) = E
(⊔

r∈S(R) π
?(r)

)
argmin
πi∈B

E(πi(R)) otherwise.

(9)

Compared to the classical procedure over hierachies, one has
also to consider all the others partial partitions of R ∈ Hm that
can be contained in the braid, since R represents the refinement
supremum of some regions in the braid, and not those regions
themselves. The optimal cut of R is then given by {R}, the
disjoint union of the optimal cuts of its children or some other
partial partition of R contained in the braid, depending on which
has the lowest energy. A step of this dynamic program is illus-
trated by Figure 3. Note that, although the dynamic program
is conducted over the monitor hierarchy Hm, the optimal cut of
the braid B may be composed of regions that do not belong to
Hm (it would be the case in the example depicted by Figure 3 if
π4(R) were for instance chosen to be the optimal cut of R).

4. Proposed hierarchical analysis of multimodal images
with braids

4.1. Constructing a braid from multiple hierarchies
As pointed out in [24], the two issues that arise when working

with braids of partitions are the validation of the braid structure
for a given family of partitions (that is, condition (7) is fulfilled),
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πa πb

'h

Fig. 4: Illustration of the h-equivalence relation: πa and πb are h-equivalent
(left), they define two different cuts of a same hierarchy (right).

and the definition of general procedures that generate braids of
partitions.
It is straightforward to compose a braid using a single hierarchy
since the supremum of two cuts of a hierarchy also defines a
cut of this hierarchy. For this reason, any set of cuts coming
from a single hierarchy is a braid. However, this guarantee is
lost when one wants to compose a braid from cuts coming from
multiple hierarchies, or, even further, with arbitrary partitions
(note in that respect that, although tempting to think so, the
family of partitions generated by the stochastic watershed [35]
has not a braid structure in general). As a matter of fact, all
those partitions must be sufficiently related so their pairwise
refinement suprema define cuts of the same monitor hierarchy
Hm. To analyze the relationships which must be holding between
the cuts of various hierarchies to form a braid, we introduce the
property of h-equivalence (h standing here for hierarchical):

Definition 2 (h-equivalence). Two partitions πa and πb are said
to be h-equivalent, and one notes πa 'h πb if and only if

∀Ra ∈ πa, ∀Rb ∈ πb,Ra ∩ Rb ∈ {∅,Ra,Rb}. (10)

In other words, a region in πa either refines or is a refinement of
a region in πb. Partitions πa and πb may not be globally compa-
rable but they locally are, as displayed by Figure 4. Obviously,
if πa ≤ πb or πb ≤ πa, then πa 'h πb. All cuts of a hierarchy
H are h-equivalent: ∀π1, π2 ∈ ΠE(H), π1 'h π2. Conversely, if
two partitions are h-equivalent, they define two cuts of a same
hierarchy. Despite a somewhat misleading name, 'h is not an
equivalence relation but only a tolerance relation: it is reflexive
and symmetric but not transitive in general.
Following, we aim to build a braid B using cuts extracted from
several hierarchical representations. To do so, we must investi-
gate what kind of relationship must be holding between those
cuts in order to guarantee the braid structure (that is, equation (7)
is satisfied. Let the family of partitions B = {πi ∈ ΠE} be a braid,
and let Hm be a monitor hierarchy of B.

Proposition 1. If there exist πi, π j ∈ B such that πi ≤ π j, then
π j ∈ ΠE(Hm).

Proof. As πi ≤ π j, it follows that πi ∨ π j = π j. And from the
definition (7) of a braid, πi∨π j ∈ ΠE(Hm), so π j ∈ ΠE(Hm).

Thus, if the braid B has two partitions ordered by refinement
(two cuts extracted from the same hierarchy for instance), the
coarest of them also belongs to the set of cuts ΠE(Hm) of the
monitor hierarchy Hm.

Proposition 2. If there exist πi, π j, πk, πl ∈ B such that πi ≤ π j

and πk ≤ πl, then π j 'h πl.

Proof. Using Proposition (1) for both πi ≤ π j and πk ≤ πl, it
follows that π j, πl ∈ ΠE(Hm). Thus π j 'h πl using the property
of h-equivalence.

Therefore, if the braid B has two pairs partitions ordered by
refinement, the coarest of both pairs are necessarily h-equivalent
to each other since they both belong to the set of cuts ΠE(Hm)
of the monitor hierarchy Hm.
Given some hierarchy H and a partition π∗ ∈ ΠE , we denote
by H'h (π∗) the set of cuts of H that are h-equivalent to π∗:
H'h (π∗) ⊆ ΠE(H) with equality if and only if π∗ ∈ ΠE(H).
Similarly, we denote by H≤(π∗) the set of cuts of H that are a
refinement of π∗.
Now, let H1 and H2 be two hierarchies of partitions built over
the same space E. We aim to extract two cuts π1

i , π
2
i ∈ ΠE(Hi)

from each of those two hierarchies Hi, i ∈ {1, 2} in order for the
family B = {π1

1, π
2
1, π

1
2, π

2
2} to be a braid. For this purpose, we

propose the following iterative procedure:

1. First select arbitrarily some cut π1
1 ∈ ΠE(H1).

2. Then choose a cut π1
2 in the constrained set H'h

2 (π1
1)\{E},

that is, a cut from H2 which is h-equivalent to π1
1 and differ-

ent from the whole space {E}.
3. Finally, complete by taking a cut in each hierarchy that is a

refinement of the cut previously extracted from the other
hierarchy, that is π2

i ∈ ΠE(Hi), i ∈ {1, 2} such that π2
1 ≤ π

1
2

and π2
2 ≤ π

1
1.

This procedure is summarized by Figure A.11.

Proposition 3. Under this configuration, B = {π1
1, π

2
1, π

1
2, π

2
2}

has a braid structure.

Proof. The proof is provided as a supplementary material in
Section Appendix A.

While other configurations for the composition of B may also
work, it is the first time that, to the best of our knowledge,
guidelines to create a non trivial braid by composing cuts from
two hierarchies are explicitly provided. We are, up to now,
only able to provide those guidelines and to guarantee the braid
structure when at most two cuts are extracted from those two
hierarchies.

4.2. Braid-based multimodal image segmentation

From a conceptual point of view, conducting the energy mini-
mization procedure described in section 3.2 over a braid structure
is appealing to perform multimodal segmentation. As a matter
of fact, if the braid is composed of partitions extracted from
the hierarchies constructed on the various modalities, then the
monitor hierarchy can be seen as a hierarchical representation
containing the salient regions that are common to the various
modalities, at all scales. Then, during the energy minimiza-
tion procedure, the dynamic program has to decide whether
a common salient region R ∈ Hm should be retained (that is,
if π?(R) = {R}), or replaced either by common regions at a
smaller scale (π?(R) =

⊔
r∈S(R) π

?(r)) or by the set of regions at
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H1

π1
1 ∈ ΠE(H1) π1

2 ∈ ΠE(H2) s.t π1
2 'h π

1
1

π2
1 ∈ ΠE(H1) s.t π2

1 ≤ π1
2 π2

2 ∈ ΠE(H2) s.t π2
2 ≤ π1

1

B = {π1
1 , π

2
1 , π

1
2 , π

2
2}

Step 1 Step 2

Step 3

H2

Fig. 5: Composing a braid B with cuts from two hierarchies H1 and H2.

a smaller scale, coming from one modality and that fit all the
modalities at the same time (π?(R) = argminπi(R)∈B E(πi(R))).
Therefore, we propose a methodology to perform multimodal
image segmentation based on the concept of braids of partition,
as illustrated by the workflow in Figure 6.
Let I = {I1,I2} be a multimodal image, assumed to be com-
posed of two modalities I1 and I2 having the same spatial
support E (hence being co-registered). First, two hierarchies
H1 and H2 are built independently on I1 and I2, respectively.
Two energy functions E1

λ and E2
λ are defined on their respec-

tive hierarchies, with only constraints to be h-increasing and
scale-increasing in order to transform the hierarchies H1 and H2
into their persistent versions H?

1 and H?
2 . For segmentation pur-

poses, we propose to define the energy functions as a piece-wise
constant Mumford-Shah energy [27]:

Ei
λ(π) =

∑
R∈π

(
Ξi(R) +

λ

2
|∂R|

)
(11)

where
Ξi(R) =

∫
R

‖Ii(x) − µi(R)‖22dx (12)

with µi(R) being the mean value/vector in modality Ii of pixel
values belonging to region R, and |∂R| denotes the length
of the boundary of R. The first term Ξi(R) is classically
termed the goodness-of-fit (GOF) term and penalizes inhomo-
geneous regions, thus leading to fine partitions and favoring
over-segmentation. The second term |∂R|/2 is often called the
regularization term and promotes partitions with few region
boundaries, therefore favoring under-segmentation. The λ co-
efficient achieves a trade-off to balance the effects of the GOF
and regularization terms. The piece-wise constant Mumford-
Shah energy function, in addition to being h-increasing and
scale-increasing [32], is a popular choice when it comes to mini-
mizing some energy function because of its ability to produce
consistent segmentations [36].
The braid B is then composed following the procedure previ-
ously described in section 4.1, allowing to construct the monitor
hierarchy Hm. A last energy term EB

λ is defined as a multi-
modal piece-wise constant Mumford-Shah energy, relying on

both modalities of the multimodal image I:

EB
λ (π) =

∑
R∈π

(
max

(
Ξ1(R)
Ξ1(I1)

,
Ξ2(R)
Ξ2(I2)

)
+
λ

2
|∂R|

)
(13)

The GOF term of each region R is now defined as the maximum
with respect to both normalized unimodal GOFs. The maximum
criterion allows to penalize a region R that would fit only one
modality. It therefore ensures the regions of the braid optimal cut
to conform both modalities at the same time. The normalization
allows both GOF terms to be in the same dynamical range. EB

λ

is also a h-increasing and scale-increasing energy thanks to the
fact that the GOF term is positive, and the regularization term
is the same as in the classical Mumford-Shah functional. Its
minimization over Hm and B following the dynamic program (8)
and (9) gives some optimal segmentation π?B of I, which should
contain salient regions shared by both modalities as well as
regions exclusively expressed by I1 and I2.

4.3. Results assessment

Assessing the consistency of the hierarchical representation of
an image in a generic manner is a challenging task, as it greatly
depends upon a specific application. A common approach is
therefore to process the hierarchy accordingly, and appraise the
obtained results with respect to the application. The hierarchi-
cal model is then declared to be relevant if it leads to proper
results. For standard image segmentation purposes, hierarchi-
cal segmentation results are often assessed by comparing the
algorithm outputs against manually delineated reference seg-
mentation maps [37; 10; 38]. In the case of multimodal images
however, it is much more difficult to proceed similarly, as avail-
able benchmark multimodal images are scarce and come without
any reference ground truth data for segmentation applications.
For those reasons, the assessment of hierarchical segmentations
for multimodal images is often conducted either by visually com-
paring the multimodal segmentation result against the marginal
segmentation outputs (when each modality is processed individ-
ually) [22].
To that extent, we propose here to evaluate the ability of the
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Fig. 6: Proposed braid-based multimodal segmentation methodology.

braid structure to represent multimodal images by comparing
the braid optimal cut π?B against the two optimal cuts π?1 and
π?2 extracted from H?

1 and H?
2 and containing the same (or a

close) number of regions. In addition, we also compare the braid
optimal cut with respect to π?[23], obtained following the method
described in [23], where a common hierarchical representation is
constructed for the various modalities of the multimodal images
(more details are given in the supplementary materials page 13
and following pages). This allows a fair visual comparison since
all four partitions π?B, π

?
1 , π?2 and π?[23] should feature regions of

similar scales. In addition, the comparison of partitions with the
same (or similar) complexity can be done by evaluating their
closeness with respect to the data. For this reason, we compute
the average GOF of π?B, π

?
1 , π?2 and π?[23] with respect to both

modalities I1 and I2 as follows:

ε(π|Ii) =
1
|E|

∑
R∈π

|R| × Ξi(R) (14)

with |R| denoting the cardinality of region R, and Ξi(R) is the
Mumford-Shah GOF term defined in equation (12). Therefore,
a consistent braid-based hierarchical representation of the mul-
timodal image should lead to segmentation results competing
with the optimal marginal segmentation π?i of each modality Ii.

5. Experimental validation

The multimodal data set on which we investigate the proposed
framework2 is the Hyperspectral/LiDAR data set described
in [39]. It is composed of a 342× 1903× 144 hyperspectral (HS)
image and a LiDAR-derived digital surface model, with the same
ground-sampling distance of 2.5 m. Data were acquired over
the campus of the University of Houston in 2012. The study site
features a typical urban area with several houses and buildings

2The same investigation is presented on a second multimodal data set in
Section Appendix C of the supplementary materials

of various shapes and heights, with roofs made of different ma-
terials, some parking lots, walkways, roads as well as portions
of grass and trees. Due to the scarcity of co-registered data sets
for the same given multimodal scenario, and in order to nonethe-
less provide some consistent results across different multimodal
scenes (we recall however that conducting a fully exhaustive
validation over a large multimodal data base is beyond the scope
of this paper, as we aim to demonstrate here the potentiality of
the braid structure for the hierarchical analysis of multimodal
images), we selected 9 crops of size 150 × 200 (either horizon-
tally or vertically) from the global data set and use them as a
corpus of Hyperspectral/LiDAR multimodal images. Smaller
image sizes also allow us to reduce the computational burden of
the whole processing chain as well as having a better insight on
the construction and processing of the braid structure and easing
the results analysis. Figure 7 displays the Hyperspectral/LiDAR
data set as well as the 9 selected crops (note the shaded portion
on the right part of the HS image due to the presence of a cloud
during the data acquisition). The HS/LiDAR complementarity
lies in the fact that both modalities convey information of dif-
ferent physical nature (ground spectral reflectance for the HS
modality and height above ground for the LiDAR). Thus, the
modalities may be redundant in some part of the scene but well
complement themselves in other parts, and the integration of this
multimodal information is expected to resolve those potential
errors in the optimal marginal segmentations.

5.1. Experimental Set-up
The first step of the braid-based multimodal image represen-

tation and segmentation methodology is to build the hierarchical
representations of the various modalities, as shown by the work-
flow of Figure 6. While there is no special requirement on the
chosen hierachical representation, we work in practice with the
BPT, which has already proved to be very efficient for hierarchi-
cal image representation and segmentation [4; 40; 33]. The BPT
representation of an image is governed by the definition of an
initial partition of the image π0, a region modelMR and a merg-
ing criterion O

(
Ri,R j

)
. Here, we use the mean spectrum and
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Fig. 7: Multimodal hyperspectral (top) and LiDAR (bottom) data set, with the 9 used crops (numbered from left to right).

spectral angle for the region model and merging criterion of the
HS modality, and the mean value and Euclidean distance for the
LiDAR modality, which can be considered as standard settings
(see the aforementioned references for more details). Moreover,
the two BPTs H1 and H2 are built on the same leaf partition
π0, which is obtained as the refinement infimum of two mean
shift clustering procedures [41] conducted on each modality
independently. The fact that H1 and H2 have the same leaf parti-
tion ensures that the three constrained set of cuts H'h

2 (π1
1)\{E},

H≤1 (π1
2) and H≤2 (π1

1) involved in the construction procedure are
non empty since they all contain at least the leaf partition.
Constructing the braid B by following the procedure exposed in
Figure A.11 raises the question from which hierarchy should the
first cut should be chosen. While this is still an open question,
we can provide the following empirical rule of thumb: the first
cut should be extracted from the hierarchy built on the modality
whose main regions of interest are the coarsest. Consequently,
for all 9 crops, the first cut is extracted from the BPT built on
the LiDAR modality (thus denoted I1 from hereon), since it
contains less fine details than the HS modality (hence named
I2).
Two parameters must be tuned to carry out the proposed work-
flow: the number of regions |π1?

1 | in the optimal cut π1?
1 that

steers the following construction of the braid and its monitor
hierarchy, and the value of the regularization parameter λ (equa-
tion (13)) that trades off between over- and under-segmentation
for the braid optimal cut. Figure C.13 presents their respective
influence (keeping constant the other parameter) on the number
of regions |π?B | in the braid optimal cut π?B for 5 out of the 9 crops
of the HSI/LiDAR multimodal data set. While the range of λ
has empirically been set between 10−5 and 5.10−5, the one of
|π1?

1 | should roughly correspond to the number of expected large
salient regions in I1. Consequently, it has been set between 100
and 300 with steps of 50.
Figure C.13 (left) not surprisingly reveals the decreasing behav-
ior of |π?B | with respect to λ. As a matter of fact, the greater the
λ, the higher the penalty on |π?B |, hence the fewer the number

of regions in the braid optimal cut π?B. The influence of |π1?
1 |

on |π?B |, as displayed by Figure C.13 (right) is however much
less clear, since crops #3, #5 and #7 show a slightly increasing
behavior while crops #1 and #9 exhibits an minor decreasing
trend. Despite |π?B | remaining relatively stable, as the nature
of the regions composing π?B changes with the value of |π1?

1 |,
we intuited that this change should impact the average GOF
value ε(π?B |Ii) with respect to both modalities I1 and I2. While
Figure C.14 displays that it is indeed the case, the behavior of
ε(π?B |Ii) with respect to |π1?

1 | does not show any clear trend that
would give an insight on how to properly tune |π1?

1 | as it seems
to depend on the content in the scene. Thus, λ and |π1?

1 | are
respectively set to 3.10−5 and 200 in the following.
The collaborative method presented in [23] is implemented in
a similar fashion: a unique BPT H [23] is built upon the same
initial partition π0, whose construction is parametrized using the
same region models and merging criteria as for the marginal
cases, with the additional consensus strategy being set to the
best median ranking. The optimal cut π?[23] is then obtained
from H [23] by minimizing energy (13) to produce the same, or a
similar, number of regions than contained in π?B.

5.2. Results

Table 1 presents the number of regions as well as the average
GOF of optimal partitions π?1 , π

?
2 , π

?
[23] and π?B with respect to

both modalities I1 (the LiDAR image) and I2 (the HS image),
for all 9 crops. For each crop, the lowest modality-wise average
GOF appears in bold. Several remarks arise from the analy-
sis of table 1. First of all, it can be observed that most of the
time, the marginal partition π?i scores the lowest average GOF
with respect to its own modality Ii (5 out of 9 times for the
LiDAR modality and even 8 out of 9 times for the HS modal-
ity). However, while π?i appears optimal with respect to its own
modality, it consistently yields the worst result in respect of the
other modality. This comes as no surprise since the marginal
segmentation is, by construction, expected to fit only its own
modality and cannot account for all the complementary features
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Table 1: Size (top) and GOF with respect to I1 (bottom left) and I2 (bottom right) of optimal partitions with respect to the 9 crops, and their overall average rank (last
column). For each crop, the lowest modality-wise GOF is in bold.

1 2 3 4 5 6 7 8 9 avg rank

π?1
872

653 | 56.8
522

2919 | 491.3
507

600 | 68.4
458

623 | 50.9
457

549 | 26.2
592

1201 | 55.2
325

251 | 15.7
348

520 | 8.1
702

377 | 48.2 2.0 | 4.0

π?2

868
651 | 8.9

523
1125 | 30.2

511
906 | 14.6

458
1101 | 23.3

458
999 | 18.8

589
2531 | 15.1

325
617 | 6.3

349
2939 | 2.2

702
1612 | 7.8 3.78 | 1.22

π?[23]

867
413 | 9.3

526
951 | 40.5

511
556 | 17.5

457
686 | 21.9

457
639 | 21.4

594
1742 | 19.0

325
346 | 8.4

348
571 | 3.4

702
380 | 11.0 2.33 | 2.22

π?B
867

476 | 10.9
522

851 | 32.5
509

445| 16.1
457

547 | 22.7
458

573 | 25.6
589

1662 | 19.7
325

260 | 6.3
348

698 | 4.4
702

394 | 12.4 1.89 | 2.56

present in the other modality. The collaborative BPT partition
π?[23] surpasses the other strategies only once for each modality
and ranks second best twice with respect to I1 and 6 times with
respect to I2. On the other hand, the braid optimal partition π?B
outperforms π?1 3 times over I1 (ranking second best 4 other
times) and equates π?2 once (ranking second best twice). Either
way, both the braid and the consensus BPT strategy are able to
integrate some multimodal information within their structure,
yielding optimal segmentations that better describe “in average”
both modalities at the same time: the descriptive accuracy and
robustness of a multimodal image are increased thanks to the
complementarity (for the former) and redundancy (for the lat-
ter) of the information contained by each single modality. The
behavior of both approaches appears rather similar in terms of
performances, as they most of the time achieve a trade-off be-
tween the two marginal segmentations in terms of average GOF.
Still, π?[23] seems to perform better with respect to I2 than I1
while the opposite observation holds for π?B. This bias of π?B
better fitting I1 than I2 might come from the fact that the first
extracted partition π1?

1 was extracted from H?
1 during the braid

construction procedure. These observations are confirmed by
the average ranks of all compared approaches with respect to
both modalities.
Figure 10 shows the optimal LiDAR marginal partition π?1 , the
optimal HS marginal partition π?2 , the optimal collaborative par-
tition π?[23] and the braid optimal partition π?B, represented by
their mean height with respect to I1 and their mean RGB value
with respect to I2. By lack of room, only crops #2, #5 and #7
are displayed. The qualitative analysis of Figure 10 leads to
similar conclusions. While π?1 is able to correctly segment all
notable regions of the LiDAR modality for all 3 crops, it fails
at segmenting regions with similar height but not made of the
same materials. This is notably the case of the running track and
football pitch in the center of crop #2, the roads and walkways
in the left and center of crop #5 and the lawns aroud the water
treatment plant in the center of crop #7. Contrarily, π?2 is able
to preserve the spectrally salient regions for all three crops. Re-
gions that have close spectral signatures but not the same height
are however generally mis-segmented in π?2 . This is in particular
the case in crops #2 and #5 where several batches of trees are
either grouped together, or fused with the neighboring grass
(whose spectral response is rather close). A slightly different
issue appears in crop #7, where the gradient of the sloped grassy

area in the bottom left corner is not well preserved, since this
information is obviously transparent to the HS modality. While
it is visually complicated to distinguish notable differences be-
tween π?[23] and π?B, a careful inspection reveals that the latter
seems to better retain small details (such as isolated trees or
walkways) than the former, possibly due to the fact that the con-
sensus strategy implemented in order to obtain π?[23] averages out
small features. However, the impossibility of creating reliable
ground truth images makes really challenging the fair compari-
son of both hierarchical multimodal approaches. Nevertheless,
all erroneously segmented regions of the marginal partitions
π?1 and π?2 appear correctly delineated in both the collaborative
partition π?[23] and the braid optimal cut π?B.

6. Conclusion

In conclusion, we presented in this article a novel method-
ology for the hierarchical representation and segmentation of
multimodal images by taking advantage of the newly introduced
concept of braids of partitions. We showed that such structures
were well suited to describe the inherent redundant and comple-
mentary information contained within multimodal images, and
were thus relevant hierarchical representations for such images.
Because of the lack of clear guidelines to check the validity of
such structure given a family of partitions, we proposed here an
iterative procedure to extract two cuts from two different and
supposedly unrelated hierarchies and guarantee that they form a
braid. Following, we endowed the resulting braid structure with
an energy minimization framework in order to obtain an optimal
partition of the multimodal data. In particular, we extended the
classical piece-wise constant Mumford-Shah energy function to
multimodal images for segmentation purposes. We investigated
the proposed methodology on 9 different crops extracted from
a Hyperspectral/LiDAR multimodal data set and 9 multimodal
RGB/Depth images from the Middleburry Stereo data set (pre-
sented in supplementary materials). In particular, we conducted
a sensitivity analysis to the two parameters from which the pro-
posed braid-based multimodal segmentation framework depends.
While the impact of the regularization parameter occuring in the
energy minimization process is well understood, the influence
of the nature of the first extracted cut steering the whole braid
construction procedure will required deeper investigations. Nev-
ertheless, the obtained results quantitatively and qualitatively
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Fig. 8: Influence of (left) regularization parameter λ (for |π1?
1 | = 200) and (right)

number of regions in partition π1?
1 for the braid construction procedure (for

λ = 3.10−5) on the size of the braid optimal cut.

demonstrated that the braid structure is able to produce a seg-
mentation that not only retains salient regions shared by both
modalities, but also regions appearing in only one modality of
the multimodal image ; being close to typical marginal segmen-
tation results obtained by considering only one modality at a
time and competing with the collaborative BPT strategy.
Up-to-now, the proposed framework is restricted only to multi-
modal images composed of two co-registered modalities, and the
construction of the braid of partition is bound to the extraction
of two different cuts per individual hierarchical representation,
limiting its use to multimodal data set featuring clear redundancy
and complementarity at the same time. In that respect, future
work will investigate theoretical aspects related to the construc-
tion of the braid of partitions, namely how to extract more cuts
coming from various hierarchies and still maintain the braid
structure, and how to relax the constraint on the co-registration
of the considered modalities. Practical consideration such as a
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Fig. 9: Influence of |π1?
1 | (for λ = 3.10−5) on the average GOF for the braid

optimal cut with respect to both modalities I1 (LiDAR) and I2 (hyperspectral).

more in-depth quantitative evaluation of the braid structure, as
well as the investigation of other applications than segmentation
will also be considered.
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Supplementary materials

Appendix A. Construction of the braid

Let H1 and H2 be two hierarchies of partitions built over the same
space E. We prove here that the following procedure (described in
section 4.1, and illustrated by figure A.11) allows to create a braid
structure:

1. First select arbitrarily some cut π1
1 ∈ ΠE(H1).

2. Then choose a cut π1
2 in the constrained set H2

'h (π1
1)\{E}, that is,

a cut from H2 which is h-equivalent to π1
1 and different from the

whole space {E}.
3. Finally, complete by taking a cut in each hierarchy that is a refine-

ment of the cut previously extracted from the other hierarchy, that
is π2

i ∈ ΠE(Hi), i ∈ {1, 2} such that π2
1 ≤ π

1
2 and π2

2 ≤ π
1
1.

Proposition 4. Under this configuration, B = {π1
1, π

2
1, π

1
2, π

2
2} has a

braid structure.

Proof. Let B = {π1
1, π

2
1, π

1
2, π

2
2} be a family of partitions composed

following the previously described procedure, and let πk,l
i, j = πk

i ∨ π
l
j

denote the pairwise refinement suprema of partitions in B. In particular,

the 4 partitions composing B generates
(
4
2

)
= 6 different pairwise

refinement suprema π1,2
1,1, π

1,1
1,2, π

1,2
1,2, π

2,1
1,2, π

2,2
1,2, π

1,2
2,2. Checking that B is a

braid amounts to verify whether the πk,l
i, j all defines cuts of the same

monitor hierarchy Hm, which is equivalent to showing that they are (at
least) all h-equivalent to each other. In order to show the braid structure
of B, we first demonstrate the following result:

Lemma 1. Let π1, π2, π3 ∈ ΠE be some partitions of E such that
π1 'h π3 and π2 ≤ π3. Then π1 ∨ π2 'h π3.

Proof. If π1 ≤ π3, then π1 ∨ π2 ≤ π3 by definition of the refinement
supremum, and so π1 ∨ π2 'h π3 since any two ordered partitions are
also h-equivalent.
On the other hand, if π1 ≥ π3, then π1 ≥ π2, hence π1 ∨ π2 = π1 and so
π1 ∨ π2 'h π3 for the same reason as above.
In the most general case where π1 and π3 are h-equivalent but can
nonetheless not be ordered, it means that π1 is a refinement of π3 in
some parts of E, and is refined by π3 in the other parts. In the former
case, let R3 be a region of π3 and π1(R3), π2(R3) be the refinements
(partial partitions) of R3 in π1 and π2. Then, π1(R3) ∨ π2(R3) is also
a refinement of R3, implying that π1 ∨ π2 refines π3 in the part of E
covered by R3. In the case where π3 is locally a refinement of π1,
then given R1 ∈ π1, there exists a refinement π3(R1) of R1 in π3, and
therefore a refinement π2(R1) of R1 in π2 since π2 ≤ π3. Therefore,
{R1}∨π2(R1) = {R1} and thus π3 refines π1∨π2 in the part of E covered
by R1. Finally, π1 ∨ π2 either refines or is refined by π3 in all parts of E,
hence π1 ∨ π2 'h π3.

To ease the reading of the proof, we first recall the relations holding
between the various partitions composing the braid B:

- π1
1 'h π

1
2 by construction.

- π2
1 ≤ π

1
2 and π2

2 ≤ π
1
1 by construction.

- π1
1 'h π

2
1 beacuse they are both cuts of the same hierarchy H1.

Similarly, π1
2 'h π

2
2.

Following, we prove that all the pairwise refinement suprema of B are at
least all h-equivalent to each other. Their relationships are summarized
in table A.2.

Table A.2: Summary of the relationships holding between all pairwise refinement
suprema of B with their corresponding item in the proof.

π1,2
1,1 π1,1

1,2 π1,2
1,2 π2,1

1,2 π2,2
1,2 π1,2

2,2

π1,2
1,1 X 1. ≤ 2. ≤ 3. 'h 4. ≤ 5. 'h

π1,1
1,2 X 6. ≤ 7. ≤ 8. ≤ 9. ≤

π1,2
1,2 X 10. 'h 11. 'h 12. 'h

π2,1
1,2 X 13. 'h 14. ≤

π2,2
1,2 X 15. ≤

π1,2
2,2 X

1. π1,2
1,1 = π1

1 ∨ π
2
1. As π2

1 ≤ π
1
2 by construction of B, it follows that

π1
1 ∨ π

2
1 ≤ π

1
1 ∨ π

1
2, hence π1,2

1,1 ≤ π
1,1
1,2.

2. π1,2
1,2 = π1

1 ∨ π
2
2 = π1

1 as π2
2 ≤ π

1
1 by construction of B. By property

of the refinement supremum, one has π1
1 ≤ π

1
1 ∨ π

2
1 = π1,2

1,1, hence
π1,2

1,2 ≤ π
1,2
1,1.

3. By construction of B, one has π1
1 'h π

1
2 and π2

1 ≤ π
1
2 = π2,1

1,2. Using
lemma 1, it follows that π1

1 ∨ π
2
1 = π1,2

1,1 'h π
2,1
1,2.

4. π2
2 ≤ π1

1 by construction of B, meaning that π2
1 ∨ π

2
2 ≤ π2

1 ∨ π
1
1,

hence π2,2
1,2 ≤ π

1,2
1,1.

5. Using item 3, we first have π1,2
1,1 'h π

1
2 = π2,1

1,2. In addition, π2
2 ≤ π

1
1

by construction of B, implying that π2
2 ≤ π

1
1 ∨ π

2
1 = π1,2

1,1. Using
lemma 1 finally leads to π1,2

1,1 'h π
1,2
2,2.

6. π1,2
1,2 = π1

1 as π2
2 ≤ π

1
1 by construction of B. The basic property of

the refinement supremum allows to conclude that π1
1 ≤ π

1
1 ∨ π

1
2,

hence π1,2
1,2 ≤ π

1,1
1,2.

7. The exact same reasoning as item 6 applied to π2,1
1,2 = π1

2 leads to
π2,1

1,2 ≤ π
1,1
1,2.

8. π2
1 ≤ π

1
2 and π2

2 ≤ π
1
1, both by construction of B. It immediately

follows that π2
1 ∨ π

2
2 ≤ π

1
1 ∨ π

1
2, hence π2,2

1,2 ≤ π
1,1
1,2.

9. The same reasoning as item 1 applies to π1,2
2,2 = π1

2 ∨ π
2
2, leading to

π1,2
2,2 ≤ π

1,1
1,2.

10. By construction of B, one has π1
1 = π1,2

1,2 'h π
2,1
1,2 = π1

2, hence the
result.

11. π1,2
1,2 = π1

1 as π2
2 ≤ π

1
1 by construction of B. In addition, π1

1 'h π
2
1

as they are both cuts of the same hierarchy H1. Using lemma 1, it
follows that π1

1 = π1,2
1,2 'h π

2,2
1,2 = π2

1 ∨ π
2
2.

12. The same reasoning as item 3 applies to π1,2
2,2 and π1,2

1,2 = π1
1 and,

relying upon lemma 1, leads to π1,2
1,2 'h π

1,2
2,2.

13. The same reasoning as item 11 applies to π2,1
1,2 = π1

2 and π2,2
1,2,

leading to π2,1
1,2 'h π

2,2
1,2.

14. The same reasoning as item 2 applies to π1,2
2,2 and π2,1

1,2 = π1
2, leading

to π2,1
1,2 ≤ π

1,2
2,2.

15. The same reasoning as item 4 applies to π2,2
1,2 and π1,2

2,2, leading to
π2,2

1,2 ≤ π
1,2
2,2.

Finally, all the pairwise refinement supremum πk,l
i, j = πk

i ∨ π
l
j that can be

formed using the partitions belonging to B are (at least) all h-equivalent
to each other. Therefore, there exists some hierarchy Hm such that
all πk,l

i, j ∈ ΠE(Hm), which proves that B has a braid structure when
constructed following the proposed procedure.
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H1

π1
1 ∈ ΠE(H1) π1

2 ∈ ΠE(H2) s.t π1
2 'h π

1
1

π2
1 ∈ ΠE(H1) s.t π2

1 ≤ π1
2 π2

2 ∈ ΠE(H2) s.t π2
2 ≤ π1

1

B = {π1
1 , π

2
1 , π

1
2 , π

2
2}

Step 1 Step 2

Step 3

H2

Fig. A.11: Composing a braid B with cuts from two hierarchies H1 and H2.

Appendix B. Description of the collaborative BPT ap-
proach

We briefly describe here the concept of collaborative binary partition
tree [4] (BPT) representation for multimodal images, as was presented
in [22; 23]. Contrarily to our proposed approach that performs the
fusion process after independent hierarchical representations have been
built for each modality, the work presented in [23] operate at the feature
level. It builds a single hierarchical representation (namely a BPT),
common to all modalities, by somehow pooling together features origi-
nating from those various modalities. In the classical setting, the BPT
representation relies on some initial partition π0 of the image and a
region merging process parametrized by some region modelMR and
associated merging criterion O(Ri,R j). More specifically, neighbor-
ing regions Ri and R j are iteratively merged based on their similarity
(measured by the merging criterion distance O(Ri,R j) evaluated on
their respective regions modelsMRi andMR j ) until the only remaining
region is the whole image support E. The application of this region
merging process amounts to the definition of a merging order listW
that stores all pairwise distance between all neighboring regions. This
list is updated at each iteration after the fusion of the two regions whose
distance is the smallest. In the collaborative framework described
in [23], each region R during the BPT construction has a specific re-
gion modelMk,R and merging criterion Ok(Ri,R j) with respect to each
modality Ik, k = 1, . . . ,K. Thus, there is no longer one merging order
listW, but as many as the number of modalitiesWk. Each merging it-
eration therefore requires a consensus step to determine which couple of
neighboring regions should be fused, according to their position in the
various listsWk. Several consensus strategies were proposed in [23],
and we selected the best median ranking one, which is implemented as
follows: each couple of neighboring regions (Ri,R j) receives K ranks
r1, . . . , rK , where rk = n means that Ok(Ri,R j) is the nth smallest value
in the merging order listWk. The rank attributed to the couple (Ri,R j)
after consensus is then defined as the median value of its individual
ranks r1, . . . , rK , allowing the creation of a consensus merging order list
W∗. Finally, the fused couple for the current merging iteration is the
one whose rank is the smallest inW∗. Each listWk is then updated
after the merging, allowing to regenerate the consensus listW∗. The
merging process then goes on until the whole image support E has been
reached.

Appendix C. Additional experimental validation

In addition to the Hypersectral/LiDAR data set presented in the
main article, we consider here a second multimodal data set denoted
RGB/Depth in the following. This multimodal scenario originates from
the Middlebury Stereo Dataset [42], which features high-resolution
left and right views of several indoor scenes as well as their associated
disparity maps. While the primary purpose of this database is to provide
a rigorous framework for the evaluation of setero algorithms, we take
advantage here of the natural complementarity between color and depth
information in order to validate the soundness of the proposed braid
framework.
Therefore, we picked 9 different scenes out the 2014 database3. In
each case, we retained the left-view color image and corresponding
disparity map, thus composing the 9 RGB/depth multimodal images as
displayed in figure C.12. Each image was resized to have width of 400
pixels (leading to a height comprised between 266 pixels and 275 pixels,
depending on the case). While the RGB modality is always expected to
complement the depth information (since it contains finer details, hence
more semantic regions), the selected scene were chosen to also feature
salient adjacent regions with different depths but of similar colors.

Appendix C.1. Experimental Set-up
We replicate on the RGB/Depth multimodal data set the experimental

set-up that was conducted on the HSI/LiDAR data set. Two BPTs H1

and H2 still serve as the base hierarchical representations for each
modality I1 and I2. The mean color/depth is used as the region model,
the merging criterion is defined as the Euclidean distance, and the
leaf partition is obtained as the refinement infimum of two mean shift
procedures conducted independently on each modality. Those two
BPTs H1 and H2 are subsequently transformed into their persistent
versions H?

1 and H?
2 , on which is conducted the braid construction

procedure (recalled in section Appendix A and figure A.11 of this
supplementary material). For each multimodal RGB/Depth scene, we
still follow the rule of thumb stated in the main manuscript: the first
cut π1?

1 steering the whole construction process is extracted from the
modality whose salient regions are the coarsest. Thus, from now on,
the modality I1 stands for the Depth while I2 represents the RGB
modality.
Following what we did for the HSI/LiDAR data set, we investigate the

3http://vision.middlebury.edu/stereo/data/scenes2014/

http://vision.middlebury.edu/stereo/data/scenes2014/
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Flowers Jadeplant Motorcycle

Piano Playroom Playtable

Recycle Umbrella Vintage

Fig. C.12: Selected RGB/Depth multimodal images from the Middleburry stereo
data set.

sensibility of the braid optimal cut π?B to the two parameters it depends
on, namely the number of regions |π1?

1 | in the cut π1?
1 and the value of

the regularization parameter λ. Figure C.13 presents their respective
influence (keeping constant the other parameter) on the number of
regions |π?B | in the braid optimal cut π?B for 4 out of the 9 scenes of the
RGB/Depth multimodal data set. The range of λ has again been set
empirically between 10−5 and 5.10−5 with steps of 10−5 while the one
of |π1?

1 | is defined between 100 and 300 by steps of 50.
This first observation arising from figure C.13 is that using the same
range for λ and |π1?

1 | leads to a braid optimal cut π?B whose number
of regions is in the same order of magnitude than for the HSI/LiDAR
data set (a few hundreds in each case). This is particularly interesting
for λ, whose setting in any optimization problem is generally achieved
by trial-and-error strategies since its optimal numerical value is often
bounded to the image nature and content. For the braid optimal cut,
the GOF normalization performed in the definition of the multimodal
equation EB

λ (see equation (14) in the main article) seemingly ensures
the same correspondance between the ranges of λ and |π?B |, regardless
of the investigated multimodal scenario.
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Fig. C.13: Influence of (left) regularization parameter λ (for |π1?
1 | = 200) and

(right) number of regions in partition π1?
1 for the braid construction procedure

(for λ = 3.10−5) on the size of the braid optimal cut.
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Fig. C.14: Influence of |π1?
1 | (for λ = 3.10−5) on the average GOF for the braid

optimal cut with respect to both modalities I1 (Depth) and I2 (RGB).

Figure C.13 (left) shows that the number of regions |π?B | in the optimal
partition π?B has again a decreasing behavior with respect to λ. The
reason evokated for the HSI/LiDAR data set still holds here: the value
of λ controls the trade-off between over- and under-segmentation in
the sense that the greater the λ, the fewer the number of regions in the
braid optimal cut π?B. Regarding the influence of |π1?

1 | on |π?B | (displayed
by Figure C.13 (right)), there clearly is an increasing trend for the
RGB/Depth (contrarily to the HSI/LiDAR data set where |π?B | remained
relatively stable with respect to |π1?

1 |). This implies that, for a fixed value
of λ, using a first cut π1?

1 with a larger number of regions engenders
a braid optimal cut π?B with also a larger number of regions. This is
plausible since π1?

1 acts as some sort of “upper bound” on the two cuts
π1?

2 and π2?
2 that are extracted from H?

2 . Note however that, if π1?
1 is

indeed an upper bound for π2?
2 since π2?

2 ≤ π
1?
1 , it is strictly speaking

not the case for π1?
2 since π1?

2 'h π
1?
1 by construction, hence π1?

2 can
have less regions than π1?

1 . We observed in practice that this is however
seldom the case, hence the trend reported in figure C.13 (right).
Figure C.14 reports the influence of |π1?

1 | on the GOF value ε(π?B |Ii)
with respect to the Depth modality I1 (left) and the RGB modality I2

(right). The number of regions π?B in the braid optimal cut π?B varying in
the same direction as π1?

1 , one would expect ε(π?B |Ii) to be decreasing
with π1?

1 (since a larger number of regions in π?B implies a smaller
average region size, thus a lower variance within each region). This is
indeed the case for ε(π?B |I2) (figure C.14 (right)), but the decreasing
rate seems to greatly depend on the considered image. As a matter of
fact, it is divided by a factor 2 for the Playtable scene (decreasing from
120 to roughly 50) while it remains almost unchanged for the Umbrella
image (diminishing from 160 to roughly 150). For the depth modality
I1 (figure C.14 (left)) however, the previous two cited scenes have some
rather intrigating behaviors: ε(π?B |I1) remains constant for Playtable,
whereas it is even increasing for Umbrella. As for the HSI/LiDAR data
set, the proper tuning of |π1?

1 | seems to be bounded to the content in the
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scene. Thus, λ and |π1?
1 | are again respectively set to 3.10−5 and 200 in

the following.

Appendix C.2. Results

Table C.3 presents the number of regions as well as the average GOF
of optimal partitions π?1 , π

?
2 , π

?
[23] and π?B with respect to both modalities

I1 (the Depth modality) and I2 (the RGB modality), for all 9 scenes.
For each scene, the lowest modality-wise average GOF appears in bold.
All listed remarks for the HSI/LiDAR data set are confirmed by the
analysis of table C.3. In particular, the marginal segmentation π?i almost
consistently scores the lowest average GOF with respect to its own
modality Ii again. As a matter of fact, π?1 is outperformed only once
with respect to I1 (by π?B on the Flowers scene). For its part, π?2 does
not rank first only twice with respect to I2, on the Piano and Vintage
images (where π?[23] and π?B achieve the best result overall, respectively).
However, the effect noticed for the HSI/LiDAR multimodal scenario
occurs again here, being that both marginal approaches perform poorly
on the alternate modality. The reason stated for the HSI/LiDAR data
set remains valid: each π?i is obtained as the minimizer of an energy
function acting only on its own modality Ii, thus not accounting for any
salient region in the other modality. Conversely, the collaborative BPT
and the braid approaches use a multimodal energy. Its minimization
forces both the Depth and RGB modalities to collaborate when a region
appears salient in one modality but not in the other, thus making full
use of the complementary information contained in the multimodal
scene. As a consequence, the obtained optimal segmentations π?[23]
and π?B achieve some trade-off in terms of fitting accuracy between the
Depth and the RGB modalities. This also explains why they tend not
to outperform the marginal segmentations on their own modality since
both π?[23] and π?B have a total number of regions being the same as (or
very close to) the one in π?1 and π?2 . Note that the bias of π?B toward
the modality from which is extracted the first cut π1?

1 during the braid
construction procedure is confirmed here as well, since π?B ranks second
best 7 times with respect to I1, but only 3 times with respect to I2.
Figure C.15 shows the optimal Depth partition π?1 , the optimal RGB
partition π?2 , the optimal collaborative partition π?[23] and the braid
optimal partition π?B for the Jadeplant, Playroom and Umbrella scenes,
represented by their mean Depth and their mean RGB value. It visually
supports all the conclusions drawn from the quantitative analysis of
Table C.3 as well as those pointed out in the main manuscript for
the HSI/LiDAR data set. As a matter of fact, π?1 accurately captures
all salient regions in the depth modality for all three scenes, but mis-
segment those with the same depth but not the same RGB color. This
can be observed for instance on the Jadeplant image for the blue grid in
the foreground which blends with its wooden support and the brown
cardboard box in the background which is merged with the green sheet
at the same depth. It can also be noticed on the Playroom scene where
all drawings in the background wall are completely omitted, or on
the Umbrella image where the details on the background wall and the
wooden drawers on the right-hand side of the scene suffer from the same
issue. The opposite phenomenon inevitably happens for π?2 : all details
are well preserved with respect to the RGB modality, at the expense
of their depth. This is particuarly noticeable on the Jadeplant image,
where the branches of the plant appears in a brownish color similar
to the one of the cardboard behind, and thus suffer from some sort of
“leakage” effect in terms of delineation accuracy. This leakage effect
also appears on red shelf of the Playroom scene. The collaborative
BPT and the braid structure again produce visually similar results,
with nevertheless some slightly more visible differences than int the
HSI/LiDAR data set, especially for the Jadeplant and Playroom scenes.
In the former case, the braid optimal cut performs notably better to
differentiate the branches from the brown background, while the optimal

segmentation extracted from the collaborative BPT clearly suffers from
the leakage effect. For the latter scene however, the collaborative BPT
better retained the details in the drawing hanging on the wall while
the braid optimal cut only preserved their overall frame. The major
differences between the two methods in the depth images can be spotted
in places where a progressive shading of depth occurs. In such case,
the gray gradient is better rendered by the segmentation extracted from
the braid structure than the one coming from the collaborative BPT, as
this latter tends to average the slight variations of gray levels because
of the consensus policy adopted during its construction.

Appendix C.3. A note on the computational complexity
We briefly discuss here the computational complexity involved in the

definition of the braid structure. We nevertheless recall that obtaining an
efficient implementation of the braid structure and conducting a quanti-
tative evaluation of the computational complexity are both beyond the
scope of this paper. Given some family of partitions B = {π1, . . . , πn},
checking whether B is a braid amounts to verify that all pairwise refine-
ment suprema πi, j = πi ∨ π j are all h-equivalent to each other (see the
proof of proposition 4).
From a practical point of view, obtaining the refinement supremum of
two partitions πi and π j is strictly equivalent to finding the connected
components of the bipartite intersection graph Gi, j = (Vi, j,Ei, j). Gi, j

is composed of as many vertices vk ∈ Vi, j as the number of regions
both in πi and π j and has ek,l ∈ Ei, j as an edge linking vertices vk and
vl if and only if the couple (Rk,Rl) ∈ πi × π j is such that Ri ∩ R j , ∅.
The connected components of Gi, j can be found in a linear time with
respect to max(|Vi, j|, |Ei, j|) [43], hence the complexity of computing
πi ∨ π j is O(max(|πi + π j|, |Ei, j|)), where |Ei, j| obviously depends on
the structure of the two partitions πi and π j. As this must be done

for the N =

(
n
2

)
possible pariwise refinement suprema of the family

B = {π1, . . . , πn}, the overall computational complexity of this first step

is O
(
n2 × max

1≤i< j≤n
(|πi + π j|, |Ei, j|)

)
.

The second step is to check that all pairwise refinement suprema πi, j

are h-equivalent to each other. In a positive scenario, then B has a braid
structure. For now, this verification is done by checking in a brute-force
manner that each region in πi0 , j0 is either disjoint or nested with all the
other regions in the remaining N−1 refinement suprema πi,i0 , j, j0 . Thus,
denoting by αN the highest number of regions among the N refinement
suprema πi, j, i.e., αN = max1≤i< j≤n |πi, j|, the complexity of the verifica-
tion step is O(N × αN), which depends both on the initial number of
partitions in the family B, as well as the structures of these partitions
(impacting the value of αN).
If the family B has indeed a braid structure, the last step is the compu-
tation of the associated monitor hierarchy Hm. This can be efficiently
done by first computing the overall infimum πHm

0 =
∧

1≤i< j≤n

πi, j of the

pairwise refinement suprema πi, j, that plays the role of the leaf partition
of the monitor hierarchy Hm. Then, the inclusion relationships among
the various regions of the different refinement suprema πi, j can be de-
duced from the number and the identity of the leaf regions of πHm

0 they
contain, allowing to create the monitor hierarchy Hm.
In the conducted experiments, we limited the number of partitions in
the family B to 4 (and hence, the number of refinement suprema to
compute to 6) to guarantee the braid structure following the proposed
construction methodology. We noted that the main factor impacting the
computational time was related to the number of regions in the parti-
tions composing the braid structure B. All experiments were conducted
on a 2.40 GHz Intel Core i7-4700HQ with Matlab R2015a, leading to
a computational time for the braid/monitor hierarchy construction and
processing being no longer than 70 seconds for the HSI/LiDAR data
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Table C.3: Size (top) and GOF with respect to I1 (bottom left) and I2 (bottom right) of optimal partitions with respect to the 9 RGB/Depth scenes, and their overall
average rank (last column). For each scene, the lowest modality-wise GOF is in bold.

Flowers Jadeplant Motorcycle Piano Playroom Playtable Recycle Umbrella Vintage avg rank

π?1

275
15.5 | 182

270
145 | 120

751
228 | 131

311
38.5 | 48.5

319
52.9 | 112

337
283 | 47.9

279
194 | 48.6

219
102 | 159

365
46.3 | 41.0

1.11 | 3.78

π?2

274
403 | 58.0

272
654 | 34.8

752
240 | 48.4

310
1861 | 26.1

317
2427 | 38.2

334
356 | 47.6

275
295 | 29.1

219
133 | 142

364
544 | 62.2

3.89 | 1.44

π?[23]

273
98.8 | 65.2

265
572 | 68.6

752
240 | 61.6

312
56.9 | 16.1

324
188 | 56.1

334
303 | 71.8

281
272 | 35.1

219
151 | 152

370
106 | 47.1

3.11 | 2.67

π?B

275
13.6 | 63.0

270
250 | 62.1

751
231 | 73.7

310
48.2 | 31.7

319
75.9 | 86.9

334
295 | 60.2

277
199 | 37.9

220
141 | 150

364
48.6 | 38.0

1.89 | 2.44

set (for crop #1 with |π1?
1 | = 300) and 180 seconds for the RGB/Depth

data set (for the Playroom scene, again with |π1?
1 | = 300). Note that

better performances could be obtained following a code optimization
pass, but this is beyond the scope of the present paper.
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π?1 π?2 π?[23] π?B

Fig. C.15: Optimal partitions π?1 , π?2 , π?
[23]

and π?B for images Jadeplant (top two rows), Playroom (middle two rows) and Umbrella (bottom two rows) represented by
their mean depth and mean RGB value.
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