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Abstract. Modern parallel SAT solvers rely heavily on effective clause
sharing policies for their performance. The core problem being addressed
by these policies can be succinctly stated as "the problem of identifying
high-quality learnt clauses" that when shared between the worker nodes
of parallel solvers results in improved performance than otherwise. The
term "high-quality clauses" is often defined in terms of metrics that
solver designers have identified over years of empirical study. Some of
the more well-known metrics to identify high-quality clauses for sharing
include clause length, literal block distance (LBD), and clause usage in
propagation.

In this paper, we propose a new metric aimed at identifying high-quality
learnt clauses and a concomitant clause-sharing policy based on a combi-
nation of LBD and community structure of Boolean formulas. The con-
cept of community structure has been proposed as a possible explanation
for the extraordinary performance of SAT solvers in industrial instances.
Hence, it is a natural candidate as a basis for a metric to identify high-
quality clauses. To be more precise, our metric identifies clauses that
have low LBD and low community number as ones that are high-quality
for applications such as verification and testing. The community number
of a clause C measures the number of different communities of a formula
that the variables in C span. We perform extensive empirical analysis of
our metric and clause-sharing policy, and show that our method signif-
icantly outperforms state-of-the-art techniques on the benchmark from
the parallel track of the last four SAT competitions.

1 Introduction

The encoding of complex combinatorial problems as Boolean satisfiability (SAT)
instances has been widely used in industry and academy over the last few
decades. From AI planning [19] to cryptography [26], modern SAT solvers have
demonstrated their ability to tackle huge formulas with millions of variables
and clauses. This is instinctively surprising since SAT is an NP-complete prob-
lem [12]. The high-level view of a SAT solver algorithm is the successive enu-
meration of all possible values for each variable of the problem until a solution is



found or the unsatisfiability of the formula is concluded. What makes SAT solv-
ing applicable to large real-world problems is the conflict-driven clause learning
(CDCL) paradigm [24].

During its search, a CDCL solver is able to learn new constraints, in the
form of new implied clauses added to the formula, which allows it to avoid the
exploration of large parts of the search space. In practice too many clauses are
learnt and a selection has to be done to avoid memory explosion. Many heuristics
have been proposed, in the sequential context, to reduce the database of learnt
clauses. Such methods of garbage collection are usually quite aggressive and are
based on measures, such as the literal block distance (LBD), whose aim is to
quantify the usefulness of clauses [4].

The omnipresence of many-core machines has led to considerable efforts in
parallel SAT solving research [7]. There exist two main classes of parallel SAT
strategies: a cooperative one called divide-and-conquer [32] and a competitive
one called portfolio [15]. Both rely on the use of underlying sequential worker
solvers that might share their respective learnt clauses. Each of these sequential
solvers has a copy of the formula and manages its own learnt clause database.
Hence, not all the learnt clauses can be shared and a careful selection must be
made in order for the solvers to be efficient. In state-of-the-art parallel solvers
this filtering is usually based on the LBD metric. The problem with LBD is its
locality, indeed a clause does not necessarily have the same LBD value within
the different sequential solvers’ context.

In this work we explore the use of a more global quality measure based on
the community structure of each instance. It is well-known that SAT instances
encoding real-world problems expose some form of modular structure which is
implicitly exploited by modern CDCL SAT solvers. A recurring property of in-
dustrial instances (as opposed to randomly-generated ones) is that some variables
are more constraint together (linked by more clauses). We say that a group of
variables that have strong link with each other and few links with the rest of
the problem form a community (a type of cluster over the variable-incidence
graph of Boolean formulas). A SAT instance may contain tens to thousand of
communities.

Contributions The primary contributions of this paper are the following:

– Based on statistics gathered during sequential SAT solver’s executions on
the benchmark from the SAT competition 2018, we study the relationship
between LBD and community, and we analyse the efficacy of LBD and com-
munity as predictive metrics of the usefulness of newly learnt clauses.

– Based on this preliminary analysis, we propose to combine both metrics to
form a new one and to use it to implement a learnt clause sharing policy in
the parallel SAT solving context.

– We implement our new sharing strategy in the solver (P-MCOMSPS [22]) win-
ner of the last parallel SAT competition in 2018, and evaluate our solver on
the benchmark from the SAT competition 2016, 2017, 2018, and 2019. We
show that our solver significantly outperforms competing solvers over this
large and comprehensive benchmark of industrial application instances.



Paper structure The remainder of the paper is structured as follows: we
introduce the basic concepts necessary to understand our work in Section 2.
Section 3 presents preliminary analysis on LBD usage to provide intuition and
motivate our work. Section 4 explores combination of LBD and COM measures
to detect useful learnt clauses. Solvers and experimental results are presented
in Section 5. Section 6 surveys some related works and Section 7 concludes this
paper.

2 Preliminaries

This section introduces useful definitions, notations, and concepts that will be
used in the remaining of the paper. It is worth noting that we consider the context
of complete SAT solving, and thus we focus on the well-known conflict-driven
clause learning (CDCL) algorithm [24]. For details on CDCL SAT algorithm we
refer the reader to [9].

2.1 Boolean Satisfiability Problem

A Boolean variable is a variable that has two possible values: true or false.
A literal is a Boolean variable or its negation (NOT). A clause is a finite dis-
junction (OR) of literals. A conjunctive normal form (CNF) formula is a finite
conjunction (AND) of clauses. In the rest of the paper we use the term formula
to refer to CNF formula. Moreover, clauses are represented by the set of their
literals, and formulas by the set of their clauses.

For a given formula F , we define an assignment of variables of F as a function
A : V → {true, false}, where V is the set of variables appearing in F . A clause
is satisfied when at least one of its literals is evaluated to true. A formula is
satisfied if all its clauses are evaluated to true. A formula is said to be satisfiable
(sat) if there is at least one assignment that makes it true; it is reported unsat-
isfiable (unsat) otherwise. The Boolean satisfiability (SAT) problem consists in
determining if a given formula is sat or unsat.

2.2 Literal Block Distance

Literal block distance (LBD) [4] is a positive integer, that is used as a learnt
clause quality metric in almost all competitive sequential CDCL-like SAT solvers.
The LBD of a clause is the number of different decision levels on which variables
of the clause have been assigned. Hence, the LBD of a clause can change over
time and it can be (re)computed each time the clause is fully assigned.

2.3 Community

It is well admitted that real-life SAT formulas exhibit notable “structures”, ex-
plaining why some heuristics such as VSIDS [27] or phase saving [30], for exam-
ple, work well. One way to highlight such a structure is to represent the formula



as a graph and analyze its shape. A structure of interest in this paper is the
so-called community structure [1]. Let us have a closer look on this latter.

An undirected weighted graph (graph, for short) is a pair G = (N,w), where
N is the set of nodes of G, and w : N × N → R+ is the associated weight
function which should be commutative.

The variable incident graph (VIG) [1] of a formula F is a graph whose nodes
represent variables of F , and there exists an edge between two variables iff they
shared appearance in at least a clause. Hence, a clause C results in

(|C|
2

)
edges.

Thus, to give the same importance to each clause, edges have a weight : w(x, y) =∑
C∈F
x,y∈C

1/
(|C|

2

)
.

The community detection of a graph is usually captured using the modularity
metric [28]. The modularity function Q(G,P ) (see equation 1), takes a graph G
and a partition P = {P1, . . . , Pn} of nodes of G. It evaluates the density of the
connection of the nodes within a part relatively to the density of the entire graph
w.r.t. a random graph with the same number of nodes and the same degree.

Q(G,P ) =
∑
Pi∈P

∑
x,y∈Pi

w(x, y)∑
x,y∈N w(x, y)

−
(∑

x∈Pi
deg(x)∑

x∈N deg(x)

)2

(1)

The modularity of G is the maximal modularity, for any possible partition P
of its nodes: Q(G) = max{Q(G,P ) | P}, and ranges over [0, 1].

Computing the modularity of a graph is an NP-hard problem [11]. However,
there exists greedy and efficient algorithms, returning an approximated lower
bound for the modularity of a graph, such as the Louvain method [10].

In the remaining of the paper we use the Louvain method (with a precision
ε = 10−7) to compute communities. Graphs we consider are VIG of formulas
already simplified by the SatElite [13] preprocessor.

Community value of a clause We call COM the number of communities on
which a clause span: we work on the VIG of the problem, so we consider com-
munities of variables. Each variable belongs to a unique community (determined
by the Louvain algorithm). To compute the COM of a clause, we consider the
variables corresponding to the literals of the clause and we count the number of
distinct communities represented by these variables.

3 Measures and Intuition

Our main goal is to improve the overall performances of parallel SAT solving.
One way to do that is to study the quality/impact of shared information between
the underling SAT engines (sequential SAT solvers) in a parallel strategy.

Since determining, a priori, the usefulness of information is already a chal-
lenging task in a sequential context, we can easily imagine the hardness of this
guessing in the parallel setting.

In almost all competitive parallel SAT solvers, the sharing is limited to par-
ticular forms of learnt clauses (unit clauses, clauses with an LBD ≤ i [8,22],



double touched clauses [5]). We propose here to focus our study on LBD and
evaluate the impact of sharing clauses with particular values.

3.1 Sequential SAT Solving, Learnt Clauses and LBD

The starting point of our analysis is to evaluate the usage of learnt clauses in
the two main components of sequential solvers, namely, the unit propagation and
the conflict analysis procedures. Performing this analysis in a sequential setting
makes perfect sense since parallel solvers launch multiple sequential solvers.

To conduct this study, we run MapleCOMSPS [23] on the main track bench-
mark from the SAT competition in 20186 with a 5000 seconds timeout. Fig. 1
depicts our observations. The x-axis shows the percentage of the mean number
of learnt clauses (considering all learnt clauses of the whole benchmark). The
y-axis corresponds to the cumulative usage percentage. Hence, the curve with
dots depicts, for different LBDs (from 1 to 9), the usage of these clauses in unit
propagation. The curve with triangles highlights the same information but for
conflict analysis.7

In both curves, the key observation concerns the inflection located around
LBD=4. The impact of clauses with LBD ≤ 4 can be considered as very positive:
60% of usage in unit propagation, and 40% in conflict analysis, while representing
only 3% of the total number of learnt clauses. Moreover, clauses with an LBD
> 4 do not bring a significant added value when considering their quantities.

Based on these results, 4 appears to be a good LBD value for both limiting
the rate of shared clauses and maximizing the percentage of tracked events in a
parallel context.

3.2 A First Parallel Sharing Strategy

To assess our previous observation, we developed a strategy implementing an
LBD-based clauses sharing : clauses learnt with an LBD below a predetermined
threshold are shared.

We then operated this strategy with LBD=4, but also with the surrounding
values (LBD=3 and LBD=5).

Our strategy has been integrated into Painless [21]8 using MapleCOMSPS as
a sequential solver engine and a portfolio parallelization strategy.

The different solvers we compare are:

– P-MCOMSPS, a portfolio SAT solver, winner of the parallel track of the SAT
competition 2018, is used as a reference. It implements a sharing strategy
based on incremental values for LBD [22].

6 http://sat2018.forsyte.tuwien.ac.at
7 On the contrary of this qualitative clause study, benchmarks presented in Sections 3.2
and 5.2 do not have any logs.

8 A framework to implement parallel solvers, thus allowing a fair comparison between
strategies.
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Fig. 1: Usage of learnt clause considering LBD

– P-MCOMSPS-L〈n〉, our new portfolio solver, with LBD ≤ n.

All solvers were processed on a 12-core Intel Xeon CPU at 2.40GHz and 62GB
of RAM running Linux 4.9. The solvers have been compiled with the version 9.2.1
of GCC . They have been launched with 12 threads, a 61GB memory limit, and
a wall clock-time limit of 5000 seconds (as for the SAT competitions). Table 1
presents our measures on the SAT 2017, SAT 2018, and SAT 2019 competition
benchmarks. 9 The shaded cells indicate which solver has the best results for
a given benchmark. It shows that the strategy based on an LBD ≤ 4 is not as

9 In Table 1, PAR-k is the penalized average runtime, counting each timeout as k
times the running time cutoff. The used value for k in the yearly SAT competition
is 2.

Solvers 2017 2018 2019
# solved # solved # solved

PAR-2 instances PAR-2 instances PAR-2 instances
P-MCOMSPS 355h42 237 430h13 258 380h03 273

P-MCOMSPS-L3 361h27 234 420h53 263 393h04 269
P-MCOMSPS-L4 356h44 237 411h14 265 391h38 269
P-MCOMSPS-L5 369h27 229 415h52 264 389h27 269

Table 1: Performances comparison for several values of LBD (3, 4, and 5).
P-MCOMSPS is used as a reference.



efficient as we could expect. In particular, we note a large instability depending
on the sets of instances to be treated.

We believe these results are due to the fact that the LBD is too related to
the local state of the solver engines. The intuition we investigate in this paper
is that the LBD metrics must be strengthened with more global information.

4 Combining LBD and Community for Parallel SAT
Solving

As previously stated, we need a metric independent of the local state of a partic-
ular solver engine. Structural information about the instance to be solved can be
useful. For instance, in a portfolio solver, structural information can be shared
among the solvers working on the same formula.

In this paper, we focus on the community structure exhibited by (industrial)
SAT instances. The metrics (COM, defined in Sec. 2.3) derived from this struc-
ture has been proven to be linked with the LBD in [29]. Besides, it has been
used to improve the performances of sequential SAT solving via a preprocessing
approach in [2].

This section shows that communities are good candidates to provide the
needed global information. To do so, we use the same protocol as the one used
in the previous section: (i) studying data on sequential SAT solving to exhibit
good candidates for the parameter values, and then (ii) check its efficiency in a
parallel context.

We completed the logs extracted from the sequential experiments presented
in Section 3 by information on communities and studied the whole package as
follows.
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Fig. 2: Heatmap showing the distribution between COM and LBD



4.1 LBD versus Communities

First, we studied the relationship between LBD and COM values thanks to two
heatmaps (see Fig. 2). The left part (Fig. 2a) shows, for each LBD value, the
distribution of COM values. The right part (Fig. 2b) shows, for each COM value,
the LBD values distribution.

For example, in Fig. 2a, we observe that ≈ 65% of the clauses with LBD=1
span on one community (COM=1), ≈ 20% of them span on two communities
(COM=2), etc.

From these figures, we can conclude two important statements:

– from Fig. 2a, warm zones on the diagonal for low LBD values indicate a a
sort of correlation between the LBD and COM values (a result that has been
already presented in [29]). Looking closer, we observe that a significant part
of the clauses does not follow this correlation: the warm zones remain below
65%, and mainly range below 25%. Hence, the COM metrics appears to be
a good candidate to refine the clauses already selected using LBD;

– from Fig. 2b, the COM values are almost uniformly distributed all over the
LBD values. We conclude that using COM as the only selecting metrics is
misleading (we assessed this with several experiments with parallel solvers
that are not presented in this paper).

4.2 Composing LBD and Communities

As previously stated, COM is a good additional criterion to LBD. We thus need
to discover the good couples of values that maximize the usage of shared clauses,
while maintaining a reasonable size.

First, we note from Fig. 1 that clauses with LBD ≤ 3 represent 1.1% of
the total clauses for a percentage of use rising up to 44.2%. Thus, there is no
benefit to further filter those clauses. Besides, this first set of clauses is not
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Fig. 3: Efficiency of LBD and COM combination. The blue dotted line
corresponds to the average and the orange lines to the median.



sufficient since Table 1 reports that the parallel solver for LBD=3 never wins
(this is mainly due to a lack of shared clauses). Therefore, we look for the set
of clauses that can be added to LBD ≤ 3 to improve performances. Based on
the observations made in Section 3, we believe the best candidate is a subset
of LBD=4 or LBD=5. To identify the good couple(s), we reused our previous
experimentation protocol and tracked data for both LBD and COM.

To capture the usefulness of learnt clauses, we define the usage ratio as
follows: the ratio of the percentage of use (propagation or conflict analysis) to
the percentage of learnt clauses (among those of a given formula). For instance,
in a given formula, a clause with a usage ratio of 10 is used 10 times more than
the average use of all learnt clauses. By extension, the usage ratio of a set of
clauses is the average of the usage ratio of all its clauses.

The resulting data is displayed as box-plot diagrams in Fig. 3. These diagrams
integrate the distribution of the usage ratio for all the formulas in the SAT
competition 2018. A box-plot denoted L〈x〉C〈y〉 corresponds to the set of clauses
with LBD=x and COM=y.

Our immediate observation (it confirms our intuition) is that, for a fixed
value of LBD, the usage ratio varies heavily considering different COM values.
Secondly, we discern that clauses with LBD=4 have a global better usage ra-
tio than those with LBD=5. The third, and critical, observation allows us to
extract the best promising configurations. Actually, L4C2 and L4C3 configu-
rations have the most impressive usage ratio: in 25% (the 3rd quartile) of the
treated instances, clauses within these configurations have a usage ratio greater
than 50 in the unit propagation (Fig. 3a), 40 in the conflict analysis (Fig. 3b)
and extends to very high values (up to 150 in propagation and 130 in conflict
analysis). Moreover, the median of propagation usage ratio for L4C2 and L4C3
(6.0 and 6.5, respectively) are twice as big as the mean of the entire LBD = 4
and LBD = 5 boxes (equal to 2.9 and noted with a dashed line in both figures).

4.3 Community Based Filtering

From this study, we can conclude that we can use the community structure as a
filter for those clauses that have been already selected using an LBD threshold.

Practically, we propose the following strategy: sharing all the clauses with
an LBD ≤ 3 (without any community limit) as well as those with an LBD ≤ 4
and a COM ≤ 3. Indeed, the former set of clauses is small while being very
useful. Whereas, to select the clauses with COM = 3 among the set of clauses
with LBD = 4 should allow a higher usage ratio while keeping the sharing at a
reasonable ratio.

To verify this assertion, and validating the effectiveness of the chosen filter
threshold (COM ≤ 3), we extend the study presented in Section 3.1. Thus, Fig. 4
and 5 take up the same points of Fig. 1, while separating propagation and conflict
analysis results (to increase readability). To those points, the new figure shows,
by triangles, the usage ratio for different filter values.

As expected, the point COM = 3 (green triangle) is at the inflection of the
curves. Consequently, selecting this set of clauses allows us to reach a better
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Fig. 4: Propagation usage of learnt clause considering LBD

usage ratio, close to the unfiltered LBD ≤ 4, while preserving a comparable
number of clauses with LBD ≤ 3. This convinces us that this metrics should
lead to increased performance in parallel SAT solving.

The following section verifies these measures in practice.

5 Derived Parallel Strategy and Experimental Results

This section first describes parallel SAT solvers we have designed to evaluate our
strategy, as well as the associated experimental protocol. It then presents and
discusses our experimental results.

5.1 Solvers and Evaluation Protocol

As in Section 3.2, we use the solver P-MCOMSPS as a reference to validate our
proposal. The only difference between the original solver and the newly developed
resides in their sharing strategies. These are as follows:

– P-MCOMSPS: the same strategy, based on incremental values for LBD.
– P-MCOMSPS-L4C3: only learnt clauses with an LBD ≤ 3 or LBD = 4 and a

COM value ≤ 3 are shared.

In P-MCOMSPS-L4C3, a special component (called sp) is dedicated to com-
pute the community structure (using the Louvain algorithm). Meanwhile, the
remaining components execute the CDCL algorithm to solve the formula, and
share clauses with an LBD ≤ 3. As noted in Section 4.2, sharing all these clauses
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should not alter performances. Once communities have been computed, sp starts
to operate the CDCL algorithm (as others), and the initial sharing strategy is
augmented by clauses characterized by an LBD = 4 and a COM ≤ 3. Prelim-
inary experiments showed that sp does not need more than a minute to finish
Louvain for almost all instances of all benchmarks. Therefore, the augmented
filter is activated early in the resolution of a formula.

For the evaluation, we used the main benchmark from SAT competitions
201610, 201711, 201812, and 201913. All solvers were launched on the same ma-
chines and with the same configuration than Section 3.2.

The results we observed are discussed in the next section.

5.2 Results and Discussion

Table 2 presents the experimental results on the aforementioned benchmarks.
When considering the number of solved instances, we clearly observe that the
new sharing strategy outperforms the one used in P-MCOMSPS, on all the SAT
competition benchmarks.

Coming to the PAR-2 metrics, things seem to be more mitigated. We study
the sharing strategy of P-MCOMSPS to find an explanation: P-MCOMSPS starts the
resolution with a low LBD threshold and increments this threshold if it deems
10 https://baldur.iti.kit.edu/sat-competition-2016/downloads/app16.zip
11 https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/Main.zip
12 http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip
13 http://satcompetition.org/sr2019benchmarks.zip



that the shared clauses throughput is not sufficient. This incremental strategy
can help the solver to learn relevant information leading to the resolution of
some edge cases. On the contrary, our restrictive sharing strategy can miss those
relevant information for these particular cases.

Solvers PAR-2 # solved instances

2019
P-MCOMSPS-L4C3 386h14 274
P-MCOMSPS 380h03 273

2018
P-MCOMSPS-L4C3 408h01 268
P-MCOMSPS 430h13 258

2017
P-MCOMSPS-L4C3 352h31 238
P-MCOMSPS 355h42 237

2016
P-MCOMSPS-L4C3 355h08 183
P-MCOMSPS 354h39 182

All P-MCOMSPS-L4C3 1 501h54 963
together P-MCOMSPS 1 520h37 950

Table 2: Evaluation of the performance of P-MCOMSPS-L4C3

Finally, as our strategy is based on the study made on a sequential solver,
we want to verify the evolution of the usage ratio in the parallel context. Let
us conduct a new evaluation: using the same protocol as the one developed
in the sequential setting of Section 4.2, we compute the clause usage ratio in
propagation and conflict analysis of our parallel solver P-MCOMSPS-L4C3. The
resulting number is the sum of all underlying sequential CDCL engines. These
logs concern 100 instances (randomly taken) from the benchmark of the SAT
competition 2018.

conflict analysispropagate

Fig. 6: Efficiency of our proposed sharing strategy.



The collected data are presented in the box-plots of Fig. 6 (the left pair
shows propagation and the right pair displays conflict analysis). Box-plots noted
S-L4C3 represent the usage ratio of the corresponding set of clauses in Maple-
COMSPS (the used sequential solver), while those noted P-L4C3 do the same for
P-MCOMSPS-L4C3.

The shared clauses in P-MCOMSPS-L4C3, clearly have a positive impact on
the intrinsic behaviour of the underlying sequential engines. They bring new
useful information for both unit propagation and conflict analysis procedures.
For example, comparing the usage ratio in unit propagation of clauses in S-L4C3
and P-L4C3, we see that the ratio of these clauses goes beyond 50 in only ≈ 25%
of the problems for S-L4C3, reaching an upper bound of 130. In P-L4C3, this
ratio goes beyond 90 in ≈ 25% of the problems and reaches an upper bound
slightly greater than 200. The same observation holds for the conflict analysis
procedure. Besides, the medians for box-plots of the parallel approach are all
higher than the corresponding medians of the sequential ones.

6 Related Works

The notable community structure of industrial SAT formulas has been identified
in [1]. Newsham et al. think that such a structure is one main reason for the
noticeable performances of SAT solvers on industrial problems [29].

Thus, several works exploit communities to improve solver performances. It
has been used to split formulas to divide the work. Ansótegui et al. developed
a pre-processor that solves community-based sub-formulas [2]. The aim is to
collect useful information used to solve the whole formula afterwards. Martins et
al. show that splitting the formula using communities helps for solving Max-SAT
problem in parallel [25]. Community structure has also been used to diversify
the decision order of workers in the context of parallel SAT portfolios [31].

It is also worth noting that another concept from the graph theory has been
successfully used within the SAT context, namely, the centrality. Katsirelos et
al. exhibited that variables selected for branching based on VSIDS are likely
to have high eigenvector centrality [18]. The betweenness centrality has been
incorporated successfully to CDCL: for branching, by using special bonus factors
while bumping VSIDS of highly central variables [16]; and for cleaning learnt
clauses database, by giving more chance to central clauses (the one with more
central variables) [17].

Besides, multiple works present metrics to improve clause sharing for parallel
SAT solving. Penelope [3] implements the progress saving based quality measure
(psm). The psm of a clause is the size of the intersection between the clause and
the phase saving of the solvers. The greater is the psm the more likely the clause
will be satisfied. While receiving learnt clauses, a worker can decide to keep them
or not. The drawback is that clauses are exchanged and then filtered which can
induce some overhead, and an a priori criteria such as LBD is often used as a
balance. In Syrup parallel solver [6], when a worker learns a clause, it waits for
the clause to be used at least once before sending it to the others. The idea



behind this is to send only clauses that seem to be useful because already used
locally.

While most of the approaches focus on limiting the number of exchanged
clauses, Lazaar et al. proposed to select workers allowed to communicate to-
gether [20]. This selection is formalized as a multi-armed bandit problem and
several metrics are explored as gain functions: size, LBD, activity.

7 Conclusion and Future Works

Most of parallel SAT solvers use local quality metrics (the most relevant being
LBD) to select learnt clauses that should be shared. In this paper, we proposed
to combine this metric with a more global quality measure (COM) based on the
community structure of the input SAT formulas. The guiding principle is to use
the community criterion as a filter for set of clauses selected by LBD, in other
to increase the usage ratio of shared clauses.

We have designed a tool to track and report learnt clauses’ characteristics in a
sequential context. As a result of this analysis, we derived a learnt clause sharing
policy, which combines LBD and COM, in a parallel context. We attested this
strategy by implementing it in P-MCOMSPS, which outperforms the competing
solver on benchmarks from the SAT competition in 2016, 2017, 2018, and 2019.

We have in mind different ways to improve this work. First, we can look for a
more dynamic approach in our filtering method. This would allow to address the
problem we mentioned in the analysis of the result in Section 5.2. We noted that
some instances benefit from an “unlimited” sharing of clauses: we believe that
we could use a delta around some threshold value for the LBD metrics, while
maintaining our threshold for the COM value. We could study the shared clauses
throughput required for different types of instances as well as the throughput
allowed by different types of hardware to increase or decrease the LBD accord-
ingly. It is worth noting that Hamadi et al. developed a similar idea but using
the size as a metric [14].

Second, we would like to study the effect of using communities as a metric for
garbage collection. This latter is one of the main components of a SAT solver,
as the solver can learn millions of clauses while exploring solutions : keeping
all these clauses slows down the propagation and leads to memory problems.
This is amplified in the parallel context where a sequential solver has its own
set of learnt clauses enriched by other solvers too. In P-MCOMSPS, clauses are
deleted depending on their LBD values. It makes sense to use a local metrics for
the logic of a local component. However, the encouraging results shown in this
paper let us think that extending the use of communities to garbage collection
would improve furthermore the sequential engines.
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