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Abstract

We consider the problem of explaining Graph Neural Networks (GNNs). While most attempts aim at explaining the final decision
of the model, we focus on the hidden layers to examine what the GNN actually captures and shed light on the hidden features built
by the GNN. To that end, we first extract activation rules that identify sets of exceptionally co-activated neurons when classifying
graphs in the same category. These rules define internal representations having a strong impact in the classification process. Then
– this is the goal of the current paper – we interpret these rules by identifying a graph that is fully embedded in the related subspace
identified by the rule. The graph search is based on a Monte Carlo Tree Search directed by a proximity measure between the graph
embedding and the internal representation of the rule, as well as a realism factor that constrains the distribution of the labels of
the graph to be similar to that observed on the dataset. Experiments including 6 real-world datasets and 3 baselines demonstrate
that our method DISCERN generates realistic graphs of high quality which allows providing new insights into the respective GNN
models.
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1. Introduction

Graphs are a powerful and widespread data structure used to represent relational data. One of their specificity
is that their underlying structure is not in Euclidean space and does not have a grid-like structure, characteristics
that facilitate the direct use of generic machine learning techniques. Indeed, each node of a graph is characterized
by its features, its neighboring nodes and recursively their properties. Such intrinsically discrete information cannot
be easily used by standard machine learning methods to either predict a label associated with the graph or a label
associated with each node of the graph. To overcome this difficulty, Graph Neural Networks (GNNs) learn embedding
vectors hv ∈ RK to represent each node v as a continuous vector that eases comparison between similar nodes. GNN
methods employ a message propagation strategy that recursively aggregates information from nodes to neighboring
nodes. This method produces vector representations of ego-graph centered in each node v (with radii equal to the
recursion index) in such a way that the classification task, based on these vectors, is optimized.

Although GNNs have achieved exceptional performance in many tasks, a major drawback is their lack of inter-
pretability. The last five years have witnessed a huge growth in the definition of techniques for explaining deep neural
networks [3, 17], especially for image and text data. However, the explainability of GNNs has been much less ex-
plored. Two types of approaches have recently been proposed and have gained a certain visibility. On the one hand,
instance-level explanation algorithms [1, 8, 16, 21, 24, 38] aim at learning a mask seen as an explanation of the model
decision for a graph instance. They obtain the best performances for instance explanation. It appears that such masks
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can lead to unreliable explanations, and most importantly, can lead to misleading interpretations for the end-user. One
can be tempted to interpret all the nodes or features of the mask as responsible for the prediction leading to wrong
assumptions. An example of misleading interpretations is when a node feature is perceived as important for the GNN
prediction, whereas there is no difference between its distribution within and outside the mask. On the other hand,
the XGNN method [39] aims at providing model-level explanations by generating a graph pattern that maximizes a
GNN output label. Yet, this assumes that there is a single pattern for each target which is not the case in practice when
dealing with complex phenomena. Most of these methods query the GNN with perturbed input graphs to evaluate
their impact on the GNN decision and build their masks from the model output. They do not study the internal mech-
anisms of the GNNs, especially the different embedding spaces produced by the graph convolutions, although we are
convinced that the study of GNN activation vectors may provide new insights on how GNNs perceive the world.

In this paper, we consider GNNs for graph classification. We introduce a new method, called DISCERN (DISClosing
the IntERnal workings of gNns with graphs), that aims at characterizing interesting internal representations of the
GNN with graphs as illustrated in Fig. 1. In each hidden layer of the GNN, we identify sets of neurons that are
differently activated according to the output variable. Such activation rules capture specific configurations in the
embedding space of a given layer that is discriminant for the GNN decision. We believe that such activation rules
also catch hidden features of input graphs. They can be directly used to support instance-level model explanation.
However, these activation rules cannot be easily interpreted by human beings. Our goal is then to explain each
activation rule by generating a graph that is fully embedded in the related subspace identified by the rule. To that end,
we define a proximity measure to assess how close a graph is to an activation rule and optimize this measure using
a Monte Carlo Tree Search (MCTS). Eventually, the generated graphs can then provide insights about the model,
especially highlighting what the model actually capture through the GNN. These graphs can also be used to explain
single instance decisions of the related model.
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Figure 1. Overview of DISCERN. For each layer (1), a background model captures the activation distribution (2) used to assess the interest of
activation rules (3). The most relevant rule is added to the pattern set (5) and used to update the background model. Steps (2-5) are repeated until no
more informative activation rule is retrieved. Activation rules directly support instance level explanations (6) or are transformed into graph thanks
to MCTS-based graph generation (7) to be easily interpreted by humans. Such graphs can also be used to explain single instance model decision.
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A preliminary version of this work was published in [30]. This paper significantly extends our first attempt. The
novel method we introduced is further described and discussed. We provide an extensive empirical study considering
more datasets and state of the art methods. The main contributions of this paper are manifolds:

• We introduce the novel problem of characterizing internal representations of GNNs as well as our method
DISCERN to generate realistic graphs that are representative of the activation rules. This method relies on a
proximity measure between a graph and an activation rule. There are different ways to construct such measures
and we propose three different ones.

• We report an empirical evaluation on several real-world datasets in Section 4 where we study the ability of DIS-
CERN to provide good explanations with realistic graphs and compare the three metrics we introduce. DISCERN
is also compared to six state of the art baselines. These experiments demonstrate that our method provides
better and more realistic explanations.

The structure of this paper is as follows: First, we discuss the most important related work in Section 2. We
formally define the problem of characterizing internal representations of GNNs and introduce our method DISCERN in
Section 3. We report a thourough and extensive empirical study in Section 4. Finally, Section 5 concludes this paper
and offers an outlook for future research.

2. Related work

GNNs are arousing wide interest thanks to their performance in several tasks such as node classification [20], link
prediction [41] and graph classification [36, 34] Many cutting-edge techniques improve the performance of models
as graph convolution [14], graph attention [28], and graph pooling [33]. However, there are few studies that address
the explainability of GNNs in comparison to the areas of image and text where an abundance of methods have been
proposed [3, 17]. As established by [40], the existing methods for the explanation of convolutional neural networks
for the classification of images cannot be directly used on data which is not grid-like such as graphs. For example, the
methods that computes an abstract images via back-propagation [26] provide non-exploitable results when they are
applied to discrete adjacency matrices. Those that learn soft masks to find important regions of images [19] do not
apply to discrete data as well. Though, some methods have been proposed to explain GNNs over the past four years.
In [40], the authors propose a taxonomy to classify all the methods from the literature. Based on this taxonomy,
one can identify two types of explanation methods: (i) the instance-level explanation methods and (ii) the model-level
explanation methods.

2.1. Instance-level methods
Given an input graph, instance-level methods aim to provide input-dependent explanations by identifying impor-

tant input characteristics on which the model builds its prediction. The explanation is provided through a mask which
is a subgraph of the input graph one wants to explain the decision. This mask allows to highlight the part of the
input graph that plays an important role in the final decision of the model. We can identify four different families of
instance-level explanation methods.

• The gradient/feature-based methods [1, 21] – directly adapted from dedicated image and text solutions – use
the gradients or hidden feature map values to compute the importance of the input features.

• The perturbation-based methods [38, 16, 10, 23, 32] aim at learning a graph mask by studying the prediction
changes when perturbing the input graphs. GNNExplainer [38] is the seminal perturbation based method for
GNNs. It learns a soft mask by maximizing the mutual information between the original prediction and the
predictions of the perturbed graphs. Similarly, PGExplainer [16] uses a generative probabilistic model to learn
succinct underlying structures from the input graph data as explanations. GraphMask [23] also trains a classifier
to build an edge mask. Edges that do not affect the GNN prediction are removed till obtaining the final mask.
Zorro [10] uses a greedy method to build discrete masks and identify important input nodes and node features.
Causal Screening [32] aims at providing edge masks by selecting the edges with the highest causal effect, i.e.,
the edges that impact the prediction when adding.
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• The surrogate methods [12, 31] explain an input graph by sampling its neighborhood and learning an inter-
pretable model. GrapheLime [12] thus extends the LIME algorithm [22] to GNN in the context of node clas-
sification. It uses a Hilbert-Schmidt Independence Criterion Lasso as a surrogate model. However, it does not
take into account the graph structure and cannot be applied to graph classification models. Relex [42] uses a
GCN – which is not it interpretable – as the surrogate model. Thererfore, it uses a pertubation-based method to
generate a soft mask. PGM-Explainer [31] builds a probabilistic graphical model for explaining node or graph
classification models. Yet, it does not allow taking into consideration edges in its explanations. These surrogate
models can be misleading because the user tends to generalize beyond its neighbourhood an explanation related
to a local model. Furthermore, the identification of relevant neighborhood in graphs remains challenging.

• The decomposition-based methods [21, 24] start by decomposing the prediction score to the neurons in the last
hidden layer. Then, they back-propagate these scores layer by layer until reaching the input space. Recently,
[25] proposes GNN-LRP to assess the importance of different graph walks.

On top of that, GraphSVX [8] falls into these 4 categories by learning a surrogate explanation model on a pertubed
dataset, the explained prediction is decomposed among input nodes and features based on their respective contribution.

2.2. Model-level methods

The only existing model-level method is XGNN [39]. It consists in training a graph generator to maximize the
predicted probability for a certain class and uses such graph patterns to explain this class. However, it is based on the
strong assumption that each class can be explained by a single graph, which is unrealistic when considering complex
phenomena.

2.3. Model introspection methods

There exists in the literature some rule extraction methods for DNNs [27], but not for GNNs. For example, Tran
and d’Avila Garcez [27] mine association rules from Deep Belief Networks. Still, their approach suffers from an
explosion of the number of patterns, which makes the results of frequency-based rule mining mostly unusable in
practice. Also, with its focus on DBNs, the method is not directly applicable to standard GNNs. More recently,
the authors of [9] define a method to identify the best set of rules in a CNN. These rules are selected thanks to the
Minimum Description Length principle. Although promising, this method is limited to CNNs.

2.4. Limitations and desiderata

Most of the aforementioned methods aim at either explaining the final decision of a GNN or generating a rep-
resentative graph for a given decision. We believe that focusing only on the model decision does not allow to fully
understand how the model behaves and builds its decision. One can provide additional insights about the GNN by
not only looking at the output of the model, but also by trying to characterize some representation subspaces that the
model has built in the different layers. Several state of the art methods [16, 31, 38, 39] will be considered as baselines
in our empirical study in Section 4.

3. Method

We propose an introspective method to explain GNN decisions in a post-hoc manner. The method identifies groups
of neurons that work together in the decision-making process and associate a subgraph that triggers the corresponding
classification rule. This problem is formalized below.
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3.1. Problem definition

We consider a set of graphs G with labels: G = (V, E, L) with V a set of vertices, E a set of edges in V ×V , and L a
mapping between vertices and labels: L ⊆ V × T , with T the set of labels. A GNN classifies each graph of G into two
categories {0, 1}: GNN : G→ {0, 1}. The GNN takes decisions at the level of each graph on the basis of vectors, the
neurons, computed at the level of the nodes of each graph. For each node, ego-graphs of increasing radii are embedded
in the Euclidean space in such a way that similar ego-graphs are associated to similar vectors. More precisely, we
consider Graph Convolutional Networks (GCN) [14] that compute vectors hℓv associated to the ego-graph centered in
vertex v with radius ℓ, recursively by the following formula:

hℓv = ReLU

Wℓ ·
∑

w∈N(v)

ew,v
√

dvdw
hℓ−1

v

 .
ev,w is the weight of the edge between nodes v and w, N(v) is the set of neighboring nodes of v including v, ReLU
is the rectified linear activation function, and Wℓ are the parameters learnt during the training phase of the model.
We also have dv =

∑
w∈N(v) ev,w. Finally, h0

v is the initial feature vector for node v with the one-hot encoding of its
label from T . Each vector is of size K and ℓ varies from 0 up to L (the maximum number of layers in the GNN), two
hyperparameters of the GNN.

Once the GNN learnt, the vectors hℓv capture the key characteristics of the corresponding graphs on which the
classification decision is made. When one of the vector components is of high value, it plays a role in the decision
process. More precisely, activated components of the vectors (the indices k such that (hℓv)k > 0) are combined by
the neural network in a path leading to the decision, either 0 or 1. For a given layer ℓ, the activated components of
the embedding hℓv correspond to the part of the ego-graph centered in v and of radius ℓ that trigger the decision. We
therefore construct the activation matrix that corresponds to the activated vector components and that is defined by

Ĥℓ[v, k] =
{

1 if (hℓv)k > 0
0 otherwise

Ĥℓ has dimensions (n × K), with n =
∑

gi∈G
|Vi|.

The matrix Ĥℓ constitutes the trace of the process performed by the GNN to classify the graphs. If it is able to
correctly classify the graphs, it is because it identifies their key characteristics to assign them in one class or the other.
However, these features are not clearly and directly accessible from Ĥℓ. This is why we propose in the following
a method to identify these features and to represent them in an intelligible way for the user. This method has two
steps. The first one identifies activation rules, i.e. the components of the matrix which are co-activated together for
the graphs assigned to the same class. This method was published in [29] and we recall its principle in Section 3.2.
The second step, and this is the main contribution of this paper, expresses these rules into a space of representation
intelligible by the user: the vector of co-activated components is represented by a sub-graph making it possible to
discriminate the graphs of the two classes. This step is detailed in Section 3.3.

3.2. Computing activation rules with INSIDE-GNN

3.2.1. Activation rules
We consider activation rules that are groups of vector components that are mostly activated together in graphs

having the same GNN decision. Let us first define the rules and their supports.

Definition 1 (Activation rule and support). An activation rule Aℓ → c is composed of a binary vector Aℓ of size K
and c ∈ {0, 1} a decision class of the GNN. A graph gi = (Vi, Ei, Li) ∈ G activates the rule if there is a node v in Vi

such that Ĥℓ[v, k] = (Aℓ)k, ∀k = 1 · · ·K. It is denoted Activate(Aℓ → c, v).
The activated graphs with GNN decision c form the support of the rule:

Supp(Aℓ → c,G) = {gi ∈ G | ∃v ∈ Vi, Activate(Aℓ → c, v) and GNN(gi) = c} .
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Hence, activated rules are more interesting if their supports are largely homogeneous in term of GNN decisions, i.e.
the graphs of the support are mainly classified either in class 0 or in class 1. We propose to measure the interestingness
of these patterns in a subjective manner. It makes possible to take into account a priori knowledge on activation
components, but also to perform an iterative extraction of the rules and thus limiting the redundancy between them.
These notions are explained below.

3.2.2. Measuring the interest of an activation rule
The question now is how to evaluate the interest of the activation rules so as to obtain a set of non-redundant rules.

One way to achieve this is to model the knowledge extracted from the activation matrix into a background model and
to evaluate the interest of a rule by the knowledge it brings in relation to it. This is what the FORSIED framework
[5] does. It proposes an operational way to define the background model and to evaluate the subjective1 interest of a
pattern by using information theory to quantify both its informativeness and complexity.

We consider the discrete random variable Hℓ[v, k] associated to the activation matrix Ĥℓ[v, k]2, and we model the
background knowledge by the probability P(Hℓ[v, k] = 1). Intuitively, the information content (IC) of an activation
rule should increase when its components are unusually activated for the nodes in the graphs of its support (it is
unlikely that these components are activated when considering a random node, while this probability increases when
considering graphs supporting the pattern).

Thus, given the probabilities P(Hℓ[v, k] = 1) and with the assumption that all Hℓ[v, k] are independent of each
other, we can evaluate the interest of a rule by the product of P(Hℓ[v, k] = 1) for v activated by the rule and k such
that (Aℓ)k = 1. Equivalently, we use the negative log-probability. The more probable the pattern – and therefore the
less interesting – the smaller this value. As there may exist several nodes activated in a single graph, we choose the
one maximizing the measure. This is formalized in the definition below.

Definition 2 (Rule information content). Given a probabilistic background model P, the information provided by a
rule Aℓ → c to characterize a set of graphs G is measured by

IC(Aℓ → c,G) =
∑

gi∈Supp(Aℓ→c,G)

max
v∈Vi
−

∑
k s.t. (Aℓ)k=1

log(P(Hℓ[v, k] = 1)) .

A pattern with a large IC is more informative, but it may be more difficult for the user to assimilate it, especially
when its description is complex. To avoid this drawback, the IC value is contrasted by its description length which
measures the complexity of communicating the pattern to the user. The higher the number of components in Aℓ, the
more difficult to communicate it to the user.

Definition 3 (Description length of a rule). The description length of a rule is evaluated by

DL(Aℓ → c) = α(|Aℓ |) + ν

with α the cost for the user to assimilate each component and ν a fixed cost for the pattern. We set ν = 1 and α = 0.6,
as the constant parameter ν does not influence the relative ranking of the patterns, and with a value of 1, it ensures
that the DL value is greater than 1. In [6], Deng recommended to tune α to biase the results toward either shorter or
longer patterns. Accordingly, α is set to 0.6 to express a slight preference toward shorter patterns.

The subjective interestingness measure is defined as the trade-off between IC and DL. However, in order to identify
rules specific to a GNN decision, we consider the difference of subjective interestingness of the measure evaluated on
the two groups of graphs.

Definition 4 (Subjective interestingness of a rule). The subjective interestingness of a rule on the whole set of graphs
G is defined by

S I(Aℓ → c,G) =
IC(Aℓ → c,G)
DL(Aℓ → c)

1Subjective means relative to the background knowledge model.
2We use hats to signify the empirical values.
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If we denote by G0 (resp. G1) the graphs gi ∈ G such that GNN(gi) = 0 (resp. GNN(gi) = 1), the subjective interest of
the rule Aℓ → c with respect to the classes is evaluated by

S I S G(Aℓ → c) = ωc S I(Aℓ → c,Gc) − ω1−c S I(Aℓ → c,G1−c).

The weights ω0 and ω1 are used to counterbalance the measure in unbalanced decision problems. The rational is to
reduce the SI values of the majority class. We set ω0 = max(1, |G

1 |

|G0 |
) and ω1 = max(1, |G

0 |

|G1 |
).

3.2.3. Computing the background model
The background model is initialized with basic assumptions about the activation matrix and updated as rules are

extracted.

Definition 5 (Initial background model). Some components can be activated more than others on all the graphs, or
some nodes can activate a variable number of components. We assume that this information is known and use it to
constrain the initial background distribution P:∑

v

P(Hℓ[v, k] = 1) =
∑

v

P(Ĥℓ[v, k] = 1),∑
k

P(Hℓ[v, k] = 1) =
∑

k

P(Ĥℓ[v, k] = 1).

However, these constraints do not completely specify the probability matrix. Among all the probability distributions
satisfying these constraints, we choose the one with the maximum entropy. Indeed, any distribution P with an entropy
lower than the maximum entropy distribution effectively injects additional knowledge, reducing uncertainty unduly.
The explicit mathematical MaxEnt model solution can be found in [4].

Once a rule Aℓ → c has been extracted, it brings some information about the activation matrix that can be integrated
into P. The model must integrate the knowledge carried by this rule, that is to say that all the components with value
1 of Aℓ are activated by the vertices activating the rule.

Definition 6 (Updating the background model). Given a rule Aℓ → c, the model P integrates the rule as follows

P(Hℓ[v, k] = 1) is set to 1

∀k such that (Aℓ)k = 1 and v such that Ĥℓ[v, k] = (Aℓ)k, ∀k = 1 · · ·K.

3.3. Characterizing activation rules with subgraphs

Activation rules correspond to a part of the GNN (i.e. part of the matrix Ĥℓ) specifically activated for a given deci-
sion (for the graphs g such that GNN(g) = c). However, these rules are not intelligible, and do not allow highlighting
the parts of the graphs which are used for the classification. To make the rule humanly understandable, we propose
to associate to each rule a subgraph. To that end, we are looking for a subgraph whose GNN embedding in layer ℓ is
as close as possible to a given activation rule. This requires defining a measure of proximity between embedding and
activation rule (see section 3.3.1), ensuring that the graphs are realistic (see section 3.3.2) and defining a procedure to
determine the subgraph that maximizes the proximity measure while being realistic (see section 3.3.3).

3.3.1. Measuring the proximity between a graph and an activation rule
To measure the proximity between a graph and a rule, we compute the embedding of the graph by the GNN and

then we compare the embedding with the rule. We propose three different measures to evaluate the proximity between
a graph embedding, centered at node v, hℓv and an activation rule Aℓ → c, with Aℓ = {a1, . . . , aK}, ai ∈ {0, 1}. These
measures use Eg = {ϵ1, . . . , ϵK} the ego-graph embedding truncated to fit the interval [0, 1]: ϵk = min

(
max(0, (hℓv)k), 1

)
.

The truncation avoids distorting our measurements by extreme values.
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The first measure is the cosine similarity measure:

Cosine(Eg,Aℓ) =
Eg . Aℓ

∥ Eg ∥ ∥ Aℓ ∥
=

∑
aiϵi√∑

a2
i

√∑
ϵ2i

(1)

It is defined to equal the cosine of the angle between the two vectors, or identically be the inner product of the vectors
normalized to length 1.

We can also consider to use the cross-entropy measure (equivalently the log-likelihood):

Cross-entropy(Eg,Aℓ) =
∑

ai log(ϵi) (2)

that increases with the number of components that have large values in the embedding of the ego-graph for the
components activated in the activation rule.

We can also consider a set of activation rules R and search for an ego-graph that specifically activates a rule Aℓ but
not the other rules, i.e. this ego-graph activates components outside the rule only if it does not trigger another rule.
We propose the following expression to measure this:

Relative-CE(Eg,Aℓ,R) = Cross-entropy(Eg,Aℓ) −max
r∈R

Cross-entropy(Eg, r) (3)

3.3.2. Realism factor
Graphs can have an embedding close to an activation rule without being realistic and be very different from graphs

in the dataset. To avoid this, we associate a realism score with each graph. This factor depends both on the probability
that two vertices are connected according to their type, and on the degree distribution for each vertex type.

Let Pi, j be the probability of having an edge with endpoints of type i and j (i, j ∈ T ). Let Pdeg(k|i) be the
probability for a node of type i of being of degree k. As we are considering subgraphs of the graphs of the dataset,
we do not want to penalize graphs whose degree is smaller than expected. Thus, we propose to use the value dk|i =

Pdeg(k|i) +
∑

x>k
Pdeg(x|i)

2k to increase the value with the probabilities associated with higher degrees. We transform this
value in a probability measure with Dk|i =

dk|i∑
x dx|i

. Thus, the realism score is calculated by

Realism(g = (V, E, L)) =
∑

(u,v)∈E log
(
PL(u),L(v)

)
#E

+

∑
u∈V log(Ddu |L(u))

#V
(4)

with L(u) the type of node u and du its degree. This realism value is added to the similarity measure between the
activation rule and the graph embedding to form the score used to evaluate a graph quality:

Score(g, Aℓ,R) = β × m(Eg,Aℓ,R) + (1 − β) × Realism(g) (5)

with β a hyperparameter whose value is fixed empirically (see section 4) and m one of the tree measures defined by
equations (1)–(3).

3.3.3. DISCERN method
We propose to use Monte Carlo Tree Search (MCTS) to find a realistic subgraph whose embedding is similar to

an activation rule. The objective is to generate an ego-graph gt that maximizes Score(Et,Aℓ,R). Each node t of the
search tree represents an ego-graph gt centered at vt whose GNN embedding is Et. A value Mt is also associated to t:
it is the sum of Score(Et,Aℓ,R) values evaluated on the terminal nodes of the subtree rooted in t.

Each node of the tree is obtained by adding an edge to the graph of its parent node. This process stops when a
terminal condition is satisfied. In our algorithm, we consider three terminal conditions:

1. The diameter of the graph is greater than ℓ,
2. The number of edges is greater than min-edges,
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3. The number of vertices is greater than min-vertices.

If one of the three conditions mentioned above is satisfied, the graph is considered terminal (see method isTerminal
in function findChild line 3, and in Function rollout line 2).

The tree is partially explored favoring the parts most likely to lead to high-scoring graphs. From an intern node
t, terminal nodes (satisfying one of the terminal conditions) are randomly generated in order to be able to evaluate
their score. This process is called rollout. The obtained score is then back-propagated to all ancestors of t in their
variable Mt. The rational behind the value Mt is to estimate the quality of the descendants of t explored so far. This
value is then adjusted to trade-off exploitation of the current examined graphs, and exploration of new ones. We use
the classical the Upper Confidence Bound UCB1 to guide the selection of the tree node to be expanded: We select the
one that maximizes UCB1.

UCB1(t) =
Mt

nt
+ c

√
log(N(t))

nt
,

where c is a constant number, Mt is the sum of the values Score for all terminal nodes descendant of t that have been
explored so far, nt is the number of terminal nodes expanded from node t during previous iterations of the algorithm,
and N(t) is the number of times the parent of t has been visited so far. It should be mentioned that the constant c in
UCB1 plays an important role to make a balance between exploration and exploitation. If c is too large, the algorithm
acts like a pure random algorithm (i.e. more exploration) and if c is too small, then exploitation rate will be increased
and may get stuck in local maxima. In our experiments, c is set to 0.5.

Let’s consider how DISCERN works in detail. Algorithm 1 starts by building the tree root node, that is a leaf, its
number of visits nt equals 0 as well as its value Mt. DISCERN consists of some iterations (epochs) whose number is
an input parameter N (line 6 to 16 of DISCERN). Each iteration starts by calling the method ExploreChild (line 5 of
DISCERN) on the root node. This method returns the next tree node that had to be explored, that is to say the one
1) whose path from root is made of nodes with maximal UCB1 values among their brothers, 2) that is a leaf and
3) that has still to be explored (it is not a terminal node). If the current node is not a leaf (line 1 of exploreChild),
findChild is called to take among the children that are not terminal, the one with the best UCB1 value. If such a node
exists, exploreChild is recursively called on it (line 4). Otherwise, the subree has completely been explored and the
exploration goes up to the parent node to examine another branch (line 6).

Then, DISCERN explores the identified node. If the node has never being expanded (t.visit = 0 at line 8), then a
rollout is performed and the obtained value is back-propagated to the tree root. Otherwise, the node is expanded with
children and a rollout is performed on the first whose value is back-propagated to the root. These three functions
(generateChildren, rollout, backPropagate) are as follows. generateChildren creates as many children then there
are possible graphs with one edge in addition to the current graph. Those edges can be between two nodes of the
graph (v ∈ V line 6) or between a node of the graph and a new node with on e of the possible labels from T (v ∈ W
line 6). These edges have to be valid (see Figure 2 and explanation below). The (arbitrary) first child is return by the
function. The function rollout simulates a new graph created by taking repeatedly uniformly at random a valid edges
and adding to the current graph until the graph is terminal. It returns the graph and its score. If the score is better
than the one encountered so far, the best graph is updated (see lines 17 to 20 of DISCERN). Finally, backPropagate
updates the Mt and nt values of the tree nodes (t.value and t.visit) until reaching the tree root.

Only valid edges can be added to a current graph g centered in node v with radius r. An edge is valid (see isValid
method in rollout and generateChildren) if adding it does not change the graph embedding in layer r − 1. That is to
say, for each node x ∈ g, dist(v, x) does not change when adding the edge. To that end, three conditions have to be
met:

• Adding an edge cannot reduce the shortest distance of a node to v. The counter example (a) in Figure 2 illustrates
this condition.

• An edge can be added between two nodes of g, if their distance to v is greater or equal to radius − 1. The
counter example (b) in Figure 2 illustrates this condition as well as examples (2) and (3).

• An edge between a node x of the graph and a new node can be added only if dist(v, x) ≥ radius−1. The counter
example (c) in Figure 2 illustrates this condition, as well as examples (1) and (4).

9
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Algorithm 1 DISCERN

Require: N: Number of epochs, Score (.,Aℓ, R): the measure to maximize, T : the set of node labels.
Ensure: best graph the graph that maximizes Score(Eg,Aℓ,R) among all explored graphs.

1: root.lea f ← True
2: root.visit← 0
3: root.value← 0
4: best value← −∞
5: for epoch = 1 to N do
6: t← exploreChild(root)
7: if (t.lea f = True) then
8: if (t.visit = 0) then
9: [value, explored graph]← rollout(t)

10: backPropagate(t,value)
11: else
12: first child← generateChildren(t)
13: [value, explored graph]← rollout(first child)
14: backPropagate(first child, value)
15: end if
16: end if
17: if (value > best value) then
18: best value← value
19: best graph← explored graph
20: end if
21: end for
22: return best graph

exploreChild(t)
1: if (t.lea f = False) then
2: best child ← findChild(t)
3: if (best child , None) then
4: exploreChild(best child)
5: else
6: exploreChild(t.parent) ▷ the subtree rooted in t has been completely explored
7: end if
8: else
9: return t

10: end if

findChild(t)
1: best child ← None
2: for s ∈ children(t) do
3: if (isTerminal(s.g) = False) then
4: if UCB1(best child) ≤ UCB1(s) then
5: best child ← s
6: end if
7: end if
8: end for
9: return best child

10
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Algorithm 2 Additional sub-functions
generateChildren(t):

1: first child← None
2: g← the graph associated to t
3: V ← the vertices of the graph g
4: W ← a set of new vertices with label in T
5: for u ∈ V do
6: for v ∈ V ∪W do
7: if (isValid(u,v)) then
8: g′ is the graph g with edge (u, v)
9: t′ ← t.add child(g′)

10: t′.lea f ← True, t.value← 0, t.visit ← 0
11: if (first child = None) then
12: first child← t′

13: end if
14: end if
15: end for
16: end for
17: return first child

rollout(t):
1: g, g2 ← the graph associated to t
2: while (isTerminal(g) = False) do
3: g2 ← g
4: Take a random edge e among the valid edges that can be added to g
5: g← Simulate a new graph g with edge e added
6: end while
7: return [Score(Eg,Aℓ,R), g2]

backPropagate(t,value):
1: while (t , None) do
2: t.visit ← t.visit + 1
3: t.value← t.value + value
4: t ← t.parent
5: end while

4. Experiments

In this section, we evaluate DISCERN through several experiments. We first describe synthetic and real-world
datasets and the experimental setup. Then, we discuss some examples of subgraphs generated by our method and
the baselines. Eventually, we present a quantitative study of our method as well as some comparisons against several
baselines. DISCERN has been implemented in Python and the experiments have been done on a machine equipped with
8 Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz cores 126GB main memory, running Debian GNU/Linux. The code
and the data are available 3.

4.1. Datasets and experimental setup
Experiments are performed on six graph classification datasets whose main characteristics are given in Table 1.

BA2 [38] is a synthetic dataset generated with Barabasi-Albert graphs and hiding either a 5-cycle (negative class)

3https://doi.org/10.5281/zenodo.7208320
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Figure 2. Considering a graph (solid lines), some edges can be added (dark dot lines), while other cannot (light gray lines). Examples – (1) and
(4): edge with a new node and a node at distance from center ≥ radius − 1; (2) edge between two nodes at a distance to the center equal to the
radius of the graph; (3) edge between a node at distance radius to the center, and a node at distance radius − 1. Counter examples – (a): a new
edge cannot create a shortcut between existing nodes; (b): no edge can be added between nodes that both are at a distance < radius from the center
of the graph; (c): a new node cannot be connected to a node at distance < radius − 1.

or a “house” pattern (positive class). The other datasets (Aids [18], BBBP[35], Mutagen [18], DD [7], Proteins
[2]) correspond to real molecules, and the class identifies important properties in Chemistry or Drug Discovery (i.e.,
possible activity against HIV, permeability and mutagenicity). Table 1 shows that the datasets are diverse, each having
its own specificity. BA2 is synthetic and simple to interpret. BBBP and Aids are very unbalanced. DD has a large
number of node attributes and is made of large graphs. Mutagen and Proteins are similar datasets, with Proteins
graphs denser than Mutagen ones. All these characteristics witness that the benchmarks we consider are diverse. This
supports thorough and systematic experimental study.

A 3-convolutional layer GNN (with K = 20) is trained on each dataset. Accuracy measures obtained on test sets
are given in Table 1 column Acc. We use the method INSIDE-GNN to mine the GNN activation vectors hℓv to discover
the activation rules Aℓ. We extract at most ten rules per layer and for each class {0, 1} as explained in [29]. On some
datasets, less than 10 rules per layer and per class are needed to describe the inner workings of a GNN (see Table 1
column #Rules). Our goal is to provide a representative graph for each rule with DISCERN. We generate graphs with
labels appearing in at least 100 nodes in the dataset (see Table 1 column #Freq T).

Table 1. Main characteristics of the datasets.
Dataset #G (# 0,#1) #T V E Acc. #Rules #Freq T
DD 1168 (681, 487) 90 268 1352 0.692 47 21
Aids 2000 (400, 1600) 38 15.69 32.39 0.99 60 7
Mutagen 4337 (2401, 1936) 14 30.32 61.54 0.786 60 10
BBBP 1640 (389, 1251) 13 24.08 51.96 0.787 60 6
Proteins 1113 (663, 450) 3 39 145 0.768 29 3
BA2(syn) 1000 (500, 500) - 25 50.92 0.97 20 -

This experimental study aims to answer the following questions:

12



L. Veyrin-Forrer et al. / Data & Knowledge Engineering 00 (2022) 1–23 13

• How does DISCERN behave?

• Are the activation rules good?

• Are the generated graphs representative and realistic?

• Which is the best metric?

• How does DISCERN behave against baselines?

To that end, especially the latter question, we compare our method against to both instance-level and model-level
explanation methods. For instance-level methods, we consider four state of the art methods: GNNExplainer [38],
PGExplainer [16], PGM-Explainer [31], and GraphSVX [8].

We also examine 3 model-level baselines:

• Random generates graphs randomly by calling the Roll-out function 250x.

• XGNN++ is an extension of XGNN [39] to our problem. We integrate Cos, CE and Relative-CE metrics as
function optimized by XGNN. We set a budget that corresponds to 5000 calls to the GNN to do a fair comparison
with DISCERN so that both methods do exactly the same number of calls to the GNN.

• DISC-GSPAN is a sound and complete method that aims at discovering discriminant subgraphs within a collec-
tion based on GSPAN enumeration [37] while exploiting some tight upper bounds on the WRAcc measure [15].
The input dataset contains the set of ego-network of nodes that support the activation rule as the “positive class”
and the ego-network of nodes not involved in the support of the rule as the negative class. Then, DISC-GSPAN
consists in computing the top-k subgraphs that are discriminant for the positive class.

By default, we empirically set min-edges=10 and min-vertices=6 as terminal conditions for DISCERN in the fol-
lowing experiments. We also empirically set the hyper-parameter β to 0.5 (see Figure 5).

4.2. Studying DISCERN behavior

For an activation rule, DISCERN takes between 20 and 50 seconds for 5000 epochs. The deeper the GNN layer, the
larger the ego-graph to be investigated, the higher the execution time.

4.2.1. Quality with respect to the number of epochs
Figure 3 (a–c) shows the maximum value of measure m (Cosine, Cross-entropy and Relative-CE) obtained on

the graphs generated by DISCERN for each dataset with respect to the number of epochs. The value on the y-axis
is the maximum value of the measure m evaluated on the explored graphs in the MCTS (explored graph lines 9
and 13 in DISCERN function) at the corresponding x-axis epoch. For each dataset, the values are aggregated over
all activation rules. The graphs show an asymptotic convergence for all the curves. Yet, the convergence is faster for
some combinations of metric and dataset (e.g., Cosine on Mutagen) than others (e.g., Cosine on DD). This experiment
demonstrates that DISCERN correctly learns which parts of the MCTS search space hold promise for generating high
value graphs.

4.2.2. Are the results actually good?
We observe in the latter experiment that the graphs generated by DISCERN become better when increasing the

number of epochs. However, one can wonder if the obtained graphs gmcts are actually good compared to the ego-
graphs gsupport that support the activation rules. Especially, we want to answer the following question:

Are the obtained scores higher than those of the ego-graph taken randomly in the dataset?
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(a) (b)

(c)

Figure 3. Maximum m values on the graphs generated by DISCERN for the metrics m (a) Cosine, (b) Cross-entropy, (c) Relative-CE on each
dataset when varying the number of epochs.

To this end, we consider a sample of nodes known to be embedded in the targeted subspace as they support the
activation rules. Similarly, we take a sample of random nodes. For both samples respectively denoted Egsample and
Egrand. , we consider the ego-graphs whose size equals the layer of the corresponding activation rule. For each sample,
we compute the score values for each quartile (Q1, Q2, Q3) that partition the sample ordered by values into 4 subsets
of equal sizes. We also consider the maximal value Qmax. We report in Table 2 the improvement factor of the graphs
produced by DISCERN compared to each quartile, i.e. the ratio Score (Egmcts , A

ℓ,R)/Qx. Results are aggregated over all
activation rules for each dataset.

Interestingly, we observe that, in most of the cases we obtain values greater than 1, even when we compare the
generated graphs to Qmax (i.e., max value of the sample). This demonstrates the high quality of the graphs generated
by DISCERN. Having values greater than 1 for Qmax of the supporting node sample means that the graphs we generate
embed well in the targeted subspace, with less activated components outside this space than for supporting nodes.
Indeed, the metrics we consider penalize activated components of the ego-graph that are not activated in the activation
rules. Obviously, the improvement factor is always better when considering the random sample than the node support
sample. Nevertheless, this gives interesting insights showing the ability of metrics to separate support nodes from
random nodes well. It is important to notice that the difference between improvement factors between the samples
Egsample and Egrand. is much larger for Cosine and Cross-Entropy than Relative-CE, especially for Q3 and Qmax. Based
on these observations, we can conclude that Cosine and Cross-Entropy metrics has a better ability to separate better
than Relative-CE.

4.2.3. Which is the best metric?
To deeper investigate the quality of the generated graph, we now study in Figure 4 the L2 norm between Egmcts

and, Egsample or Egrand. . We observe that both CE and Relative-CE tend to provide graphs whose embeddings are more
14
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Table 2. Avg. improvement factor of the score provided by DISCERN against the score of the quartiles of two distributions: (1) nodes from rule
support (supp) and (2) some random nodes (rand).

Dataset Measure Samp. Q1 Q2 Q3 Qmax

DD

Cosine supp 1.19 × 108 2.72 1.56 1.28
Cosine rand 8.12 × 109 5.04 × 109 2.83 × 109 1.03 × 109

Cross-Entropy supp 1.26 1.16 1.14 1.12
Cross-Entropy rand 9.57 × 1011 4.21 × 1011 2.33 × 1011 1.09 × 1011

Relative-CE supp 1.35 1.05 0.96 0.89
Relative-CE rand 3.79 × 1011 3.14 2.37 1.68

Aids

Cosine supp 1 × 108 1.94 1.63 1.46
Cosine rand 7.34 × 109 1.52 × 109 7.50 × 108 2.30 × 108

Cross-Entropy supp 1.25 1.17 1.15 1.14
Cross-Entropy rand 9.48 × 1011 1.44 × 1011 6.42 × 1010 7.82 × 109

Relative-CE supp 1.35 1.10 1.04 0.99
Relative-CE rand 4.02 × 1011 3.66 2.37 1.74

Mutagen

Cosine supp 12.59 2.69 2.14 1.66
Cosine rand 7.33 × 109 1.42 × 109 1.01 × 109 3.84 × 108

Cross-Entropy supp 1.22 1.16 1.15 1.13
Cross-Entropy rand 1.02 × 1012 1.28 × 1011 1.01 × 1011 3.51 × 1010

Relative-CE supp 1.32 1.17 1.12 1.06
Relative-CE rand 4.38 × 1011 6.71 3.76 2.17

BBBP

Cosine supp 5.27 2.31 1.78 1.58
Cosine rand 7.61 × 109 1.16 × 109 5.19 × 108 1.37 × 108

Cross-Entropy supp 1.21 1.15 1.14 1.13
Cross-Entropy rand 9.86 × 1011 1.16 × 1011 6.22 × 1010 1.17 × 1010

Relative-CE supp 1.27 1.09 1.03 0.99
Relative-CE rand 4.20 × 1011 11.33 2.18 1.61

Proteins

Cosine supp 4.49 1.67 1.45 1.29
Cosine rand 5.61 × 109 3.1 × 108 3.80 1.71
Cross-Entropy supp 1.32 1.22 1.20 1.19
Cross-Entropy rand 1.01 × 1012 1.68 × 1010 10.72 3.82
Relative-CE supp 1.31 1.06 1.00 0.96
Relative-CE rand 3.72 × 1011 5.16 2.11 1.44

BA2

Cosine supp 1.84 × 107 4.54 2.82 1.78
Cosine rand 7.25 × 109 1.77 × 109 7.71 × 108 43.69
Cross-Entropy supp 5.01 × 109 2.48 2.02 1.75
Cross-Entropy rand 1.29 × 1012 1.23 × 1011 8.59 × 1010 1.26 × 1010

Relative-CE supp 1.24 1.00 0.98 0.99
Relative-CE rand 5.69 × 1011 3.74 × 105 2.74 1.63

similar of the support sample than Cosine. Cosine reports greater L2 norm to Egrand. than the two other measures but
this is not significant.

Similarly, we investigate the distances between the graphs generated by DISCERN with the three metrics, the graphs
from the support sample and the ones form the random sample, for each activation rule and dataset. We consider the
graph edit distance [11], an error tolerant matching technique between graphs that is computed directly from the
graphs and not their embedding. Results are reported in Table 3. We consider, for each rule and each measure, the
set Gm of graphs produced by 10 runs of DISCERN, or a subset of 10 graphs from the support or the random samples.
For set m1 in row and set m2 in column, we report the value meang∈Gm1 maxh∈Gm2

GED(g,h)
#Vg+#Eg

, with GED, the graph edit
distance. Results are similar to what we observe when studying the L2 norm between vectors: Graphs from the
support sample are closer to graphs generated by DISCERN with Cross-Entropy than those generated with Relative-CE
and Cosine metrics (see supp related rows in Table 3). Furthermore, graphs generated by DISCERN– particularly with
Cross-Entropy metric – are far away from the graphs of the random samples (see rand related rows in Table 3).
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Figure 4. Average L2 norm between the generated graphs and support (red) and random (cyan) nodes for all activation rules. Dataset are (from top
to bottom): DD, Aids, Mutagen, BBBP, Proteins, BA2. Left, middle and right columns depict Cosine, Cross-Entropy and Relative-CE measures.
The lower the red histogram, the higher the cyan one, the better.
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Table 3. Graph edit distances on Aids, Mutagen and BBBP. Distances are normalized by (#vertices + #edges) of the row graphs.
Aids Cosine Cross-Entropy Relative-CE supp rand
Cosine 0. 0.751 0.755 0.582 0.647
Cross-Ent. 0.746 0. 0.643 0.499 0.654
Relative-CE 0.749 0.658 0. 0.517 0.661
Supp. 0.747 0.725 0.724 0. 0.526
Rand. 0.753 0.758 0.734 0.391 0.
Mutagen Cosine Cross-Ent. Rel.-CE Supp. Rand.
Cosine 0. 0.755 0.712 0.653 0.66
Cross-Ent. 0.73 0. 0.622 0.61 0.678
Relative-CE 0.726 0.683 0. 0.599 0.672
Supp. 0.696 0.654 0.643 0. 0.419
Rand. 0.731 0.712 0.689 0.376 0.
BBBP Cosine Cross-Ent. Rel.-CE Supp. Rand.
Cosine 0. 0.701 0.713 0.609 0.633
Cross-Ent. 0.689 0. 0.630 0.559 0.625
Relative-CE 0.718 0.657 0. 0.559 0.622
Supp. 0.694 0.645 0.636 0. 0.4
Rand. 0.716 0.685 0.663 0.352 0.

These experiments demonstrate that the ability of DISCERN to generate representative graphs for the activation
rules regardless of the three measures Cosine, Cross-Entropy, and Relative-CE. These experiments suggest that Cross-
Entropy is slightly better than the two other measures. Nevertheless, the difference are not significant.

4.3. Comparison to instance-level methods
We consider a ground-truth free metric to compare the methods. We opt for the Fidelity [21] which is defined

as the difference of predicted probability between the predictions on the original graph and the one obtained when
masking part of the graph based on the explanations:

Fidelity =
1
N
×

N∑
i=1

(
f (gi)yi − f (gi \ mi)yi

)
where mi is the mask, gi \ mi is the complementary mask and f (g)yi is the prediction score for class yi. Similarly, we
can study the prediction change by keeping important features (i.e., the mask) and removing the others as Infidelity
measure does:

Infidelity =
1
N
×

N∑
i=1

(
f (gi)yi − f (mi)yi

)
The higher the fidelity, the lower the infidelity, the better the explanation.

Obviously, masking all the input graph would have important impact to the model prediction. Therefore, the
former measures should not be studied without considering the Sparsity metric that aims to measure the fraction of
graph selected as mask by the explainer:

Sparsity =
1
N

N∑
i=1

(
1 −
|mi|

|gi|

)
,

where |mi| denotes the size of the mask mi and |gi| is the size of gi (the size includes the number of nodes, of edges and
the attributes associated to them). Based on these measures, a better explainability method achieves higher fidelity,
lower infidelity while keeping a sparsity close to 1.

17



L. Veyrin-Forrer et al. / Data & Knowledge Engineering 00 (2022) 1–23 18

Table 4. Assessing the explanations with several metrics. A better explainer achieves higher fidelity, lower infidelity while keeping a sparsity close
to 1. XXXXXXXXXXModels

Datasets
DD Aids Mutagen BBBP Proteins BA2

(a) Fidelity
AR(node) 0.490 0.175 0.582 0.362 0.359 0.342
DISCERN(Cosine) 0.124 0.031 0.319 0.172 0.086 0.471
DISCERN(Cross-Entropy) 0.130 0.026 0.360 0.188 0.072 0.460
DISCERN(Relative-CE) 0.113 0.054 0.366 0.198 0.070 0.446
GnnExplainer 0.077 0.036 0.177 0.100 0.021 0.093
PGExplainer 0.070 0.032 0.157 0.098 0.019 0.004
PGM-Explainer 0.059 0.080 0.123 0.212 0.073 0.222
SVXexplainer 0.010 0.003 0.039 0.008 0.006 0.004

(b) Infidelity
AR(node) 0.133 0.767 0.237 0.374 0.160 0.000
DISCERN(Cosine) 0.239 0.119 0.290 0.193 0.069 0.149
DISCERN(Cross-Entropy) 0.228 0.125 0.196 0.411 0.056 0.124
DISCERN(Relative-CE) 0.271 0.039 0.195 0.134 0.076 0.246
GnnExplainer 0.075 0.036 0.140 0.099 0.021 0.223
PGExplainer 0.082 0.038 0.157 0.098 0.024 0.353
PGM-Explainer 0.343 0.766 0.347 0.482 0.324 0.296
SVXexplainer 0.343 0.771 0.356 0.489 0.292 0.341

(c) Sparsity
AR(node) 0.769 0.897 0.731 0.870 0.249 0.002
DISCERN(Cosine) 0.983 0.664 0.741 0.630 0.649 0.641
DISCERN(Cross-Entropy) 0.977 0.721 0.742 0.623 0.645 0.674
DISCERN(Relative-CE) 0.979 0.478 0.195 0.707 0.669 0.676
GnnExplainer 0.502 0.501 0.505 0.501 0.986 0.804
PGExplainer 0.529 0.547 0.515 0.534 0.545 0.955
PGM-Explainer 0.976 0.862 0.900 0.973 0.957 0.746
SVXexplainer 0.965 0.988 0.931 0.940 0.991 0.943

Several policies to build a mask directly from an activation rule are possible. We opt for the simplest policy
AR(node) which takes as a mask only the nodes that are covered by the activation rule and the edges adjacent to
these nodes. This policy allows assessing how relevant are the activation rules. We also consider the graphs generated
by DISCERN as masks.To this end, for an instance graph, we select among all the rules that are activated, the related
generated graph that maximizes the trade-off between Fidelity and Infidelity. The selected subgraph is then used as a
mask for explanation.

The average time to provide an explanation ranges from 8ms to 30ms for AR(node). This is faster than PGM-
Explainer (about 5s), GNNExplainer (80ms to 240ms) and SVXexplainer (40ms to 60ms). It remains slightly slower
than PGExplainer (6ms to 20ms). DISCERN is slower than AR(node) (about 1s). Even if the graph is already built for
each activation rule, it requires several graph inclusion computations to provide a mask for an instance.

Table 4(a) outlines the performance of the explainers based on the Fidelity measure. Results show that AR(node)
outperforms the baselines. These results must be analysed while considering the sparsity (see Table 4(c)). Except
for Proteins and BA2, AR(node) provides explanations which have a comparable sparsity to the baselines. The
quality of the explanations are also assessed with the Infidelity metrics in Table 4(b). AR(node) is outperformed by
GnnExplainer and PGExplainer. This suggests that a rule taken in isolation does not allow a correct classification of
a graph. It is undoubtedly necessary to consider combinations of graphs to explain a decision. Interestingly, DISCERN
that builds on activation rules often provides better results in term of Indfidelity than AR(node), achieving score that
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are similar to the state of the art methods while having better fidelity and sparsity scores than these methods in most
of the cases. Finally, the generated graph brings further interpretability on activation rules without altering too much
the performance of the explainer directly built from these rules. All together, these results suggest that the activation
rules allow identifying relevant representation space within the GNNs.

4.4. Comparison to model-level baselines

We now assess DISCERN against model-level explanation baselines. Notice that Random and DISC-GSPAN
are not directed by the measures we introduce. On the contrary, XGNN++ optimizes either Cosine, Cross-Entropy
or Relative-CE measures. We compare these baselines against DISCERN with a similar experimental protocol as in
Section 4.2.3. For each activation rule, we study the L2 norm between the best graph generated by each method and the
activation rule Aℓ. We assume that each rule is represented by a vector whose values equal to 1 for components inside
the rule, 0 otherwise. Results are reported in Table 5. Note that DISC-GSPAN fails for BA2 and Proteins because of
the small number or the absence of labels on nodes, which makes extraction impossible. For all measures, DISCERN
provides graphs that are better embedded within the target space than any other method. On average, DISCERNCos

outperforms the best solution based on either XGNN or DISC-GSPAN of about 12%.

Table 5. Average L2 norm between the graphs provided by each method aggregated over all activation rules. The lower the value, the better.
DD Aids Mutagen BBBP Proteins BA2

Random 4.18 4.12 4.63 4.34 5.32 6.59
DISC-GSPAN 3.52 3.62 3.90 3.47 • •

XGNN++(Cosine) 4.19 4.04 4.61 4.26 5.39 5.58
XGNN++(Cross-Entropy) 4.09 3.97 4.46 4.15 5.23 6.57
XGNN++(Relative-CE) 4.16 4.01 4.50 4.22 5.15 6.56
DISCERNCosine 3.11 3.18 3.47 3.15 4.42 4.61
DISCERNCross−Entropy 3.16 3.47 3.76 3.45 4.54 4.64
DISCERNRelative-CE 3.34 3.47 3.75 3.48 4.55 4.59

We study the importance of hyperparameter β (see section 3.3.2) for generating realistic graphs. To this end, we
assess how realistic the generated graphs are compared to those from the related dataset. We compute the maximum
common subgraph (MCSG) between the graph returned by DISCERN and each graph from the dataset. In Fig 5, we
report the size of the MCSG normalized by the size of the generated graph when β varies. When this value reaches
one, it means that the generated graph is a subgraph of a graph from the dataset. Therefore, the closer the value is
to 1, the more realistic the generated graphs are. We observe that the graphs generated by DISCERN become more
realistic when the hyperparameter β increases. Interestingly, Cross-Entropy and Relative-CE metrics allow obtaining
a more realistic graph than Cosine metric for the same value of β. For information, the realism factor is also reported
for the three baselines. By definition, DISC-GSPAN provides more realistic graphs since it mines frequent subgraphs.
Hence, the realism factor is equal to 1. XGNN++ fails to generate realistic graphs whatever the metrics with a value
ranging between 0.5 and 0.7 which still remains better than random.

4.4.1. Examples
We report in Figure 6 the best graphs provided by each method for two activation rules on Mutagen. These rules

are highly correlated to the decision “Mutagenicity”. For the first rule (top row), DISC-GSPAN and DISCERN identify
parts of toxycophores (Bay-region, K-region) [13]. XGNN++ provides either unrealistic (i.e., Cosine) or too general
graphs (i.e., only one carbon). Note that the graph generated by DISCERN for both Cross-Entropy and Relative-CE is
not entirely realistic since a hydrogen atom cannot have two bonds. Nevertheless, duplicating this atom and binding
it to another carbon (dashed node and edge) leads to a similar representation which is realistic.

For the second activation rule (bottom), both DISC-GSPAN and DISCERNCross−Entropy depict a part of amine group
(NH2) while DISCERNRelative−CE outputs Ammonia. These molecules are known to be toxicophore. DISCERNCosine

generates a Vinylidene group also known to be toxic. It is interesting to note that the center nodes (red filled nodes)
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DD Aids

Mutagen BBBP

Proteins

Figure 5. Normalized maximum common subgraph (MCSG) between DISCERN and generated graphs (y-axis) with respect to β for all datasets
except BA2. The closer to 1, the more realistic the graph.

do not depict the same atom. Once again, graphs generated by XGNN++ are either unrealistic or too general (carbon
atom). Graphs generated by Random are not shown as they are too unrealistic as shown in Figure 5.

4.5. Discussion

We state here the main conclusion we can draw from these experiments. Our method DISCERN makes it possible to
generate representative graphs considering three metrics (i.e., Cross-Entropy, Cosine and Relative-CE). Experiments
give evidence that these three metrics are well optimized through the MCTS-based generation. The quality of the
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Figure 6. Graphs generated by each method for two activation rules (rows) that are highly correlated to mutagenicity. Red cross highlights
unrealistic bonds or molecules. Red nodes are those that activate the rule.

representative graphs is statistically significant as reported in Table 2. Results suggest that Cross-Entropy is slightly
better than two others but this is not significant. Experiments demonstrate that interest of activation rules. Building
mask directly from activation rules allows us outperforming the state of the art instance-level explainers. Nevertheless,
such rules are not interpretable. This motivates DISCERN whose instance explanation performance is comparable to
competitors. The second series of experiments demonstrates that DISCERN outperforms the baselines by providing
more realistic graphs. Nevertheless, we do not have theoretical guarantee of generating fully realistic graphs and
DISCERN can generate graph with unrealistic configuration as shown in Figure 6.

5. Conclusion and future work

In this paper, we have tackled the problem of explaining GNNs with an original angle of attack. Instead of just
assessing the importance of some input graph feature to the model decision, our goal is to study the GNN internal
representation, i.e., to identify and highlight the features the GNN built through its different layers. To this end,
we have introduced a novel method for explaining internal representations of GNNs. Given some activation rules
that define internal representations having a strong impact on the classification process, DISCERN generates, with a
MCTS approach, realistic graphs that fully embed in the related subspace identified by the rules. Our method relies
on a proximity measure between a graph and an activation rule to assess how the generated graph embeds in the
subspace defined by the activation rule. There are different ways to construct such a measure and we have proposed
three different ones. We have reported an extensive empirical study on six real-world datasets. We have obtained
comprehensive results proving that the activation rules allow identifying relevant representation spaces built by the
GNN. Masks directly built from the activation rules allow obtaining a instance-level model explanation method that
outperforms four state of the art methods while explanations directly based on the graph generated by DISCERN achieve
performance comparable to state of the art methods. We have provided further evidence that DISCERN characterizes
well each rule with realistic graphs. This makes it possible to capture interesting insights about how the internal
representations are built by the GNN.

We believe that such method can support knowledge discovery from powerful GNNs and provide insights on
object of study for scientists. Finally, a number of potential limitations need to be considered for future research to
make this knowledge discovery from GNNs effective in practice. First, due to its intrinsic nature, the generated graphs
pay attention to the graph structure. As a consequence, some findings may be over-specified especially in the case
where the GNN builds only-content-related features. To overcome this limitation, we need to provide some additional
assessment and/or to introduce a “wild-card label”. Second, the relations between layers are not taken into account in
the discovery of activation rules. This may lead to redundant results when considering all the layers. To avoid such
redundancy, it is necessary to take into account as prior knowledge the previous layers of a given layer.
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The present study has only investigated the discovery of activation rules and then their characterization based on
a representative generated graph. We believe that this allows to identify hidden features built by the GNN. However,
the current study does not take into account how these features are combined to lead to the model decision. A next
step toward interpretability is the investigation of how the model combine these features.
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