
What Does My GNN Really Capture? On Exploring Internal GNN
Representations

Luca Veyrin-Forrer1 , Ataollah Kamal1 , Stefan Duffner1 ,
Marc Plantevit2 and Céline Robardet1

1Univ Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205, FR-69621 Villeurbanne
2EPITA Research and Development Laboratory (LRDE), FR-94276 Le Kremlin-Bicêtre

Abstract

GNNs are efficient for classifying graphs
but their internal workings is opaque
which limits their field of application. Ex-
isting methods for explaining GNN fo-
cus on disclosing the relationships be-
tween input graphs and the model’s deci-
sion. In contrary, the method we propose
isolates internal features, hidden in the
network layers, which are automatically
identified by the GNN to classify graphs.
We show that this method makes it possi-
ble to know the parts of the input graphs
used by GNN with much less bias than
the SOTA methods and therefore to pro-
vide confidence in the decision process.

1 Introduction
Graphs are a powerful and popular data structure
used to represent relational data. One of their speci-
ficity is that their underlying structure does not form
a Euclidean space, characteristic that facilitates the
direct use of generic machine learning techniques.
To overcome this difficulty, Graph Neural Networks
(GNNs) learn embedding vectors hv ∈ RK to rep-
resent each node v as a vector of fixed dimension K
that eases comparison between similar nodes. GNN
methods employ a message propagation strategy
that recursively aggregates information from nodes
to neighbouring nodes and produce vector represen-
tations of ego-graphs centered in a node v with radii
equal to the recursion index so that to optimize a
classification task based on these vectors.

Related work. Although GNNs achieve excep-
tional performance in many tasks, a major draw-
back is their lack of interpretability. The last five
years have witnessed a huge growth in the definition
of techniques for explaining deep neural networks
[Burkart and Huber, 2021; Molnar, 2020], espe-
cially for image and text data. However, these meth-
ods cannot be directly used for explaining GNN due
to the none grid-like format of graphs [Yuan et al.,
2020b]. Nevertheless, a few proposals have been
made to explain GNNs according to two distinct ap-
proaches and have gained visibility.
Instance-level methods aim to learn a mask seen as
an explanation of the model decision for a graph in-
stance. These methods provide explanations spe-
cific to an input graph by identifying its impor-
tant characteristics on which the model builds its
prediction. We can identify four different fami-
lies of methods. The gradient/feature-based meth-
ods [Baldassarre and Azizpour, 2019; Pope et al.,
2019] – directly adapted from dedicated image and
text solutions – use the gradients or hidden fea-
ture map values to compute the importance of the
input features. The perturbation-based methods
[Ying et al., 2019; Luo et al., 2020] aim at learn-
ing a graph mask by studying the prediction changes
when perturbing the input graphs. The surrogate
methods [Huang et al., 2020; Vu and Thai, 2020]
explain an input graph by sampling its neighbor-
hood and learning an interpretable model. The
decomposition-based methods [Pope et al., 2019;
Schnake et al., 2020] start by decomposing the pre-
diction score to the neurons in the last hidden layer.
Then, they back-propagate these scores layer by
layer until reaching the input space. On top of that,

GraphSVX [Duval and Malliaros, 2021] falls into
these 4 categories by learning a surrogate explana-
tion model on a perturbed dataset that decomposes
the explained prediction among input nodes and fea-
tures based on their contribution. These methods
perform well on metrics evaluating the relationships
between explanations and model decisions. How-
ever, it appears that these masks can lead to unre-
liable explanations, and most importantly, can lead
to misleading interpretations for the end-user. One
can be tempted to interpret all the nodes or features
of the mask as responsible for the prediction leading
to wrong assumptions. For instance, a node feature
may be perceived as important for the GNN pre-
diction, whereas there is no difference between its
distribution within and outside the graphs validat-
ing the mask.
Model-level methods. The only existing model-
level method is XGNN [Yuan et al., 2020a] which
aims at training a graph generator to maximize
the predicted probability for a class and uses such
graphs to explain this class. However, it is based
on the strong assumption that each class can be ex-
plained by a single graph, which is unrealistic when
considering complex phenomena.

Most of the aforementioned methods aim at ei-
ther explaining the final decision of a GNN or gen-
erating a representative graph for a given decision.
We believe that focusing only on the model decision
does not allow to fully understand how the model
behaves and builds its decision. One can provide
additional insights about the GNN by not only look-
ing at the output of the model, but also by trying to
characterize some representation subspaces that the
model has built in the different layers.

Contribution. We introduce a new method,
called DISCERN (DISClosing the IntERnal work-
ings of gNns with graphs), that aims at characteriz-
ing interesting internal representations of the GNN
with graphs as illustrated in Figure 1. In each hid-
den layer of the GNN, we identify sets of neurons
that are differently activated according to the out-
put variable. Such activation rules capture specific
configurations in the embedding space of a given
layer that is discriminant for the GNN decision. We
believe that such activation rules also catch hidden
features of input graphs. However, these activation
rules cannot be easily interpreted by human beings.
Our goal is then to explain each activation rule by
generating a graph that fully embeds in the related

G
N

N

Model Output

Input
Graphs

…

…

…

Activation
Matrices

……

…
…
…

…

…

……
…
…
…

…
… Activation

Rules

Background
Knowledge

3
4

5

1

2

6

7 MCTS

…
…

Figure 1: DISCERN overview. For each layer (1), a back-
ground model captures the activation distribution (2) used
to assess the interest of activation rules (3). The most rel-
evant rule is added to the pattern set (5) and used to update
the background model. Steps (2-5) are repeated until no
more informative activation rule is retrieved. Activation
rules directly support instance level explanations (6) or
are transformed into graphs (7).

subspace identified by the rule. To this end, we
define a proximity measure to assess how close a
graph is to an activation rule and optimize this mea-
sure using a Monte Carlo Tree Search (MCTS).

Our main contributions are as follows. We in-
troduce the novel problem of identifying activa-
tion rules and their characterization with subgraphs
(Section 2). We report an empirical evaluation on
three real-world datasets (Section 3) where we show
that our activation rules identify masks of higher
quality than SOTA methods and that DISCERN pro-
vide good explanations with realistic graphs com-
pared to baselines. The code source of the method is
made available: https://github.com/luvf/inside-gnn.

Targeted audience. Imagine you are a scientist
who has a GNN that accurately predicts the graphs
you are studying. This means that the GNN is able
to capture interesting features and combine them.
Therefore, understanding how the GNN constructs
its internal representation would shed new light on
your field of research. This is our goal.

2 Method
We propose an introspective method to explain
GNN decisions in a post-hoc manner. The method
identifies sets of neurons that work together in the
decision-making process, called activation rules,

https://github.com/luvf/inside-gnn

and characterizes them with subgraphs.

2.1 GNN Embedding Vectors
We consider a set of graphs G with labels, G =
(V,E, L) with V a set of vertices, E a set of edges
in V ×V , and L a mapping between vertices and la-
bels of T : L ⊆ V ×T . We study GNNs that classify
each graph of G into two categories {0, 1}: GNN :
G→ {0, 1}. The GNN takes decisions at the level
of each graph on the basis of vectors, the neurons,
computed at the level of the nodes of each graph.
For each node, ego-graphs of increasing radii are
embedded in a Euclidean space in such a way that
similar ego-graphs are associated to similar vectors.
Indeed, we consider Graph Convolutional Networks
(GCN) [Kipf and Welling, 2017] that compute vec-
tors hℓ

v associated to the ego-graph centered in ver-
tex v with radius ℓ, recursively by the following for-
mula: hℓ

v = ReLU
(

Wℓ ·
∑

w∈N (v)
ew,v√
dvdw

hℓ−1
v

)
,

ev,w is the weight of the edge between nodes v
and w, N (v) is the set of neighboring nodes of
v including v, ReLU is the rectified linear activa-
tion function, and Wℓ are the parameters learnt dur-
ing the training phase of the model. We also have
dv =

∑
w∈N (v) ev,w and h0

v is the initial feature
vector for node v with the one-hot encoding of its
label from T . Each vector is of size K and ℓ varies
from 0 up to L (the maximum number of layers in
the GNN), two hyperparameters of the GNN.

Once the GNN learnt, the vectors hℓ
v capture the

key characteristics of the corresponding graphs on
which the classification decision is made. When one
of the vector components is of high value, it plays
a role in the decision process. More precisely, ac-
tivated components of the vectors – the indices k
such that (hℓ

v)k > 0 – are combined by the neural
network in a path leading to the decision, either 0
or 1. For a given layer ℓ, the activated components
of the embedding hℓ

v correspond to the part of the
ego-graph centered in v and of radius ℓ that triggers
the decision.

2.2 Activation Rules
To shed light on the inner workings of GNN, we
seek to identify sets of neurons that are co-activated
for a given class. Activation rules are groups of vec-
tor components that are mostly activated together
in graphs having the same GNN decision. We say
that a rule R ≡ Aℓ → c, with Aℓ a binary vec-

tor of size K and c ∈ {0, 1}, is activated for a
graph gi = (Vi, Ei, Li) ∈ G if there exists a node
v in Vi whose components in layer ℓ that corre-
spond to the activated components of the rule are
also co-activated, that is iff ∃v ∈ Vi such that if
Aℓ

k = 1 then (hℓ
v)k > 0. The graphs of decision c

for which Aℓ is activated constitute the support of
R: supp(R) = {gi | ∃v ∈ Vi s.t. ∀k

(
Aℓ

k = 1
)
⇒(

(hℓ
v)k > 0

)
and GNN(gi) = c}.

We evaluate the interest of a rule using an
interestingness measure based on the FORSIED
framework [De Bie, 2011] that makes possible to
measure the subjective interest of a rule using infor-
mation theory to quantify both its informativeness
and its complexity. Suppose that knowledge of the
distribution of activated neurons over the nodes is
formalized by a probability distribution P , called
background distribution. From this distribution, we
can define an optimal code to transmit a pattern,
a set of activated neurons, to a user. This optimal
code is specified as − log(P (x)) for data x. The
more probable the user judges the data to be, the
shorter the code describing it would be. Thus,
by estimating the probability P ((hℓ)k, v) that the
component (hℓ)k is activated for a node v, we can
evaluate the interest of a rule by the length of the
code for communicating the rule to the user using
the sum of − log(P ((hℓ)k, v)) over all (hℓ)k of the
rule and v, an activated node in its support graphs.
The more probable the pattern – and therefore the
less interesting – the shorter the code. As there
may exist several nodes activated in a single graph,
we choose the one that maximizes the above value
and define the Information Content as: IC(R) =∑

g=(V,E)∈supp(R) maxv∈V −
∑

x∈Aℓ log(P (x, v)).
The initial background distribution P is esti-

mated using the Maximum Entropy Principle (other
distributions introducing additional knowledge un-
duly [De Bie, 2011]) coercing the distribution by
the frequency of activation of each component on
the nodes of the graphs and by the average num-
ber of activated components per nodes. The explicit
mathematical MaxEnt model solution can be found
in [De Bie, 2009].

A rule with a large IC is more informative, but
it may be more difficult for the user to assimilate
it, especially when its description is complex. To
avoid this drawback, the IC measure is contrasted
by the description length which measures the com-

plexity of communicating the rule to the user. The
higher the number of components in Aℓ, the more
difficult to communicate it to the user. Therefore,
we propose to measure the description length of an
activation rule by DL(Aℓ) = a(|Aℓ|)+ b with a the
cost for the user to assimilate each component and b
a fixed cost for the rule. We set b = 1 and a = 0.6,
as the constant parameter b does not influence the
relative ranking of the rules, and with a value of
1, it ensures that the DL value is greater than 1.
With a = 0.6, we express a slight preference toward
shorter rules. Hence, the subjective interestingness
measure of an activation rule is SI(R) = IC(R)

DL(Aℓ)
.

To measure how a rule R is specific to a GNN
decision, we compare SI(Aℓ → c) with SI(Aℓ →
1 − c): SI SG(Aℓ → c) = ωcSI(Aℓ →
c) − ω1−cSI(Aℓ → 1 − c). The weights ω0

and ω1 are used to counterbalance the measure
in unbalanced decision problems. The rational
is to reduce the SI values of the majority class.
We set ω0 = max(1, |GNN(gi)=1|

|GNN(gi)=0|) and ω1 =

max(1, |GNN(gi)=0|
|GNN(gi)=|).

Activation rules are computed in an iterative way.
First, the activation rule that maximizes SI SG
is computed with an enumerate-and-rank approach.
Then, the knowledge bring by the rule is integrated
into the background distribution P to force the ex-
traction of diversified rules. Once the rule is known,
its subjective interest falls down to 0. This consists
in setting the probabilities corresponding to the rule
components and its supporting nodes to 1. Then, the
process is iterated a fixed number of times or until
there is no more rule with a positive SI SG value.
Details can be found in [Veyrin-Forrer et al., 2021].

2.3 Characterizing Activation Rules With
Subgraphs

For each activation rule, we seek to identify a sub-
graph whose presence in an input graph triggers the
rule. For this, we are looking for a subgraph whose
GNN embedding in layer ℓ is as close as possible to
the activation rule. This requires defining a measure
of proximity between embedding and activation rule
and finding the subgraph that maximizes it.

We propose two measures to evaluate the prox-
imity between an ego-graph embedding hℓ

v and an
activation rule Aℓ → c, with Aℓ = {a1, . . . , aK},
ai ∈ {0, 1}. We denote by Eg = {ϵ1, . . . , ϵK} the

ego-graph embedding truncated to fit the interval
[0, 1]: ϵk = min

(
max(0, (hℓ

v)k), 1
)
. The trunca-

tion avoids distorting our measurements by extreme
values. The cosine measure evaluates the similarity
between Eg and Aℓ: Cos(Eg,Aℓ) =

Eg . Aℓ

∥Eg∥ ∥Aℓ∥ =∑
aiϵi√∑

a2
i

√∑
ϵ2i

. It is equal to the cosine of the an-

gle between the two vectors, or identically be the
inner product of the vectors normalized to length 1.
We can also use the cross-entropy measure (equiva-
lently the log-likelihood) to evaluate this similarity:
CE(Eg,Aℓ) =

∑
ai log(ϵi). It increases with the

number of components that have a large value in
the embedding of the ego-graph for the components
activated in the activation rule.

We also define a realism score that depends both
on the probability that two vertices are connected
according to their type. This score is added to the
similarity measure to form the final score used to
evaluate the adequacy of a graph to represent an ac-
tivation rule.

We use Monte Carlo Tree Search (MCTS) to find
an ego-graph gt that maximizes the above men-
tioned measure. Each node of the tree is obtained
by adding an edge to the graph of its parent node.
This process stops when either (1) the diameter of
the graph is greater than ℓ, or (2) the number of
edges is greater than min-edges, or (3) the num-
ber of vertices is greater than min-vertices. The
tree is partially explored using the classical the Up-
per Confidence Bound UCB1 to guide the selection
of the node to be expanded [Auer et al., 2002]. The
possible actions to extend a non-terminal ego-graph
gt are the different edges that it is possible to add
to the graph so that it remains connected: (1) those
with an endpoint in Vt, the other one being a new
node (v ̸∈ Vt) labeled with one label of T , or (2)
the ones whose two endpoints are in Vt. Thus, there
are #Vt × (#Vt + #T) possible actions. To im-
prove the search, we cut down this set of available
actions. The goal is to reduce the breadth of the tree,
to avoid the generation of some isomorphic graphs,
while obtaining more homogeneous values of mea-
sure score on the graphs obtained in the subtree.

3 Experiments
We evaluate DISCERN through several experiments.
We first describe the datasets and the experimental
setup. Then, we compare our method against sev-

eral instance-level and model-level baselines. Fi-
nally, we discuss some examples of subgraphs gen-
erated by our method and the baselines. Experi-
ments are performed on three graph classification
datasets (Aids [Morris et al., 2020], BBBP [Wu et
al., 2017], Mutagen [Morris et al., 2020]) depicting
molecules and important properties in Chemistry or
Drug Discovery (class). A 3-convolutional layer
GNN (with K = 20) is trained on each dataset.

We mine 10 activation rules per layer and for
each class. This experimental study aims to answer
the following questions: Are the activation rules
good? How does DISCERN behave against base-
lines? To that end we compare our method against
both instance-level and model-level methods. For
instance-level methods, we consider 3 SOTA meth-
ods: GNNExplainer [Ying et al., 2019], PGEx-
plainer [Luo et al., 2020] and PGM-Explainer [Vu
and Thai, 2020]. We also examine 3 model-level
baselines: Random generates graphs randomly by
calling the Roll-out function 250x. XGNN++ is an
extension of XGNN [Yuan et al., 2020a] to our
problem. We integrate both Cos and CE metrics
as function optimized by XGNN. We set a budget
that corresponds to 5000 calls to the GNN to do a
fair comparison with DISCERN. DISC-GSPAN is a
sound and complete method that aims at discovering
discriminant subgraphs within a collection based on
GSPAN enumeration [Yan and Han, 2002] while
exploiting some tight upper bounds on the WRAcc
measure. The input dataset contains the set of ego-
network of nodes that support the activation rule as
the “positive class” and the ego-network of nodes
not involved in the support of the rule as the nega-
tive class. Then, DISC-GSPAN consists in comput-
ing the top-k subgraphs that are discriminant for the
positive class.

Comparison to instance-level methods. We con-
sider a ground-truth free metric to compare the
methods. We opt for the Fidelity [Pope et al.,
2019] which is defined as the difference of pre-
dicted probability between the predictions on the
original graph and the one obtained when mask-
ing part of the graph based on the explanations:
Fid. = 1

N ×
∑N

i=1(f(gi)yi
− f(gi \mi)yi

), where
mi is the mask, gi \mi is the complementary mask
and f(g)yi is the prediction score for class yi. Sim-
ilarly, we study the prediction change by keeping
important features (i.e., the mask) and removing the
others as Infidelity measure does: Infid. = 1

N ×

Model Aids BBBP Mutagen
(a) Fidelity

AR(node) 0.175 0.362 0.582
DISCERN(Cos) 0.025 0.175 0.311
DISCERN(CE) 0.027 0.181 0.288
GnnExplainer 0.036 0.100 0.177
PGExplainer 0.032 0.098 0.157
PGM-Explainer 0.089 0.212 0.260

(b) Infidelity
AR(node) 0.767 0.374 0.237
DISCERN(Cos) 0.079 0.149 0.214
DISCERN(CE) 0.031 0.438 0.191
GnnExplainer 0.036 0.099 0.140
PGExplainer 0.038 0.098 0.157
PGM-Explainer 0.765 0.392 0.354

(c) Sparsity
AR(node) 0.897 0.870 0.731
DISCERN(Cos) 0.765 0.666 0.717
DISCERN(CE) 0.731 0.639 0.754
GnnExplainer 0.501 0.501 0.505
PGExplainer 0.547 0.534 0.515
PGM-Explainer 0.855 0.884 0.956

Table 1: Assessing the explanations with several met-
rics. A better explainer achieves higher fidelity, lower
infidelity while keeping a sparsity close to 1.

∑N
i=1(f(gi)yi − f(mi)yi). The higher the fidelity,

the lower the infidelity, the better the explainer.
Obviously, masking all the input graph would

have important impact to the model prediction.
Therefore, the former measures should not be
studied without considering the Sparsity metric
that aims to measure the fraction of graph se-
lected as mask by the explainer: Spars. =
1
N

∑N
i=1

(
1− |mi|

|gi|

)
, where |mi| denotes the size

of the mask mi and |gi| is the size of gi (the
size includes the number of nodes, of edges and
the attributes associated to them). Based on these
measures, a better explainability method achieves
higher fidelity, lower infidelity while keeping a spar-
sity close to 1.

Several policies to build a mask from an activa-
tion rule are possible. We opt for the simplest pol-
icy AR(node) which takes as a mask only the nodes
that are covered by the activation rule and the edges
adjacent to these nodes. This policy allows to as-
sess how relevant are the activation rules. We also
consider masks built thanks to DISCERN, i.e., that
associates a unique interpretable graph to each acti-
vation rule. To this end, for an instance graph, we
select among all the rules that are activated, the re-
lated generated graph that maximizes the trade-off
between Fidelity and Infidelity. The selected sub-
graph is used as a mask for explanation.

Aids BBBP Mutagen
Random 4.60 4.37 4.13
DISC-GSPAN 3.69 3.82 4.17
XGNN++(Cos) 4.13 4.42 4.57
XGNN++(CE) 4.06 4.25 4.48
DISCERN(Cos) 3.12 3.08 3.39
DISCERN(CE) 3.29 3.32 3.68

Table 2: Average L2 norm between the GNN embeddings
of graphs provided by each method and the activation
rules. The lower the value, the better.

Table 1(a) outlines the performance of the ex-
plainers based on the Fidelity measures. Results
show that AR(node) outperforms the baselines.
These results must be analysed while considering
the sparsity (see Table 1(c)). AR(node) provides
sparser explanation than the baselines. The quality
of the explanations are also assessed with the In-
fidelity metrics in Table 1(b). AR(node) is out-
performed by GNNExplainer and PGExplainer. This
suggest that a rule taken in isolation does not allow
a correct classification of a graph. It is undoubt-
edly necessary to consider combinations of graphs
to explain a decision. Interestingly, DISCERN that
builds on activation rules provides better results in
term of Indfidelity than AR(node), achieving score
that are similar to the SOTA methods while having
better fidelity and sparsity scores than these meth-
ods in most of the cases. Finally, the generated
graph brings further interpretability on activation
rules without altering too much the performance of
the explainer directly built from these rules. All
together, these results suggest that the activation
rules allow to identify relevant representation space
within the GNNs.

Comparison against model-level baselines. The
three baselines (i.e., Random, DISC-GSPAN, and
XGNN++) optimizes either Cos or CE metrics. We
compare them against DISCERN. For each activa-
tion rule, we study the L2 norm between the GNN
embedding of the best graph generated by each
method and the activation rule Aℓ. Results are re-
ported in Table 2. For both CE and Cos, DISCERN
provides graphs that better embed within the target
space than any other method.

Examples. We report in Figure 2 the best graphs
for each method for two activation rules on Muta-
gen. These rules are highly correlated to the deci-
sion “Mutagenicity”. Graphs generated by Random
are not shown as they are unrealistic. For the first

C

C

C

H

N

DISC-GSPAN
WRAcc= 0.12

H

C

C

C

DISCERN(Cos)
Score=1.6

DISCERN(Cross-Ent.)
Score=1.84

H

C

C

CN

H

XGNN++(Cos)
Score=0.78

C

H

F

S

H

O

NH

H

DISC-GSPAN
WRAcc= 0.14

DISCERN(Cos)
Score=1.69

C

H

C

H
N

H

H

DISCERN(Cross-Ent.)
Score=1.46

XGNN++(Cos)
Score=0.80

C

H

N

C

CaCa

Figure 2: Graphs generated by each method for two ac-
tivation rules (rows) that are highly correlated to mu-
tagenicity. Red cross highlights unrealistic bonds or
molecules. Red nodes activate the rule. XGNN++(CE)
returns only a carbon atom.

rule (left column), DISC-GSPAN and DISCERN iden-
tify parts of toxycophores (Bay-region, K-region)
[Kazius et al., 2005]. XGNN++ provides either un-
realistic (i.e., Cos) or too general graphs (i.e., only
one carbon). Note that the graph generated by DIS-
CERN for CE is not entirely realistic since a hydro-
gen atom cannot have two bonds. Nevertheless, du-
plicating this atom and binding it to another carbon
(dashed node and edge) leads to a similar represen-
tation which is realistic. For the second activation
rule, both DISC-GSPAN and DISCERN(CE) depict a
part of amine group (NH2). These molecules are
known to be toxicophore. DISCERN(Cos) generates
a Vinylidene group also known to be toxic. Graphs
generated by XGNN++ are unrealistic.

4 Conclusion
We have introduced a novel method for explaining
internal representations of GNNs. Given some acti-
vation rules that define internal representations hav-
ing a strong impact on the classification process,
DISCERN generates, with a MCTS based approach,
realistic graphs that fully embed in the related sub-
space identified by the rules. Experiments demon-
strate that (i) the activation rules identify relevant
representation spaces built by the GNN and (ii) DIS-
CERN makes it possible to describe these activa-
tion rules with realistic graphs and then to capture
insights about the internal representations built by
the GNN. We believe that such method can support
knowledge discovery from powerful GNNs and pro-
vide insights on object of study for scientists.

References
[Auer et al., 2002] Peter Auer, Nicolò Cesa-

Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Mach.
Learn., 47(2-3):235–256, 2002.

[Baldassarre and Azizpour, 2019] Federico Bal-
dassarre and Hossein Azizpour. Explainability
techniques for graph convolutional networks.
CoRR, abs/1905.13686, 2019.

[Burkart and Huber, 2021] Nadia Burkart and
Marco F. Huber. A survey on the explainability
of supervised machine learning. J. Artif. Intell.
Res., 70:245–317, 2021.

[De Bie, 2009] Tijl De Bie. Finding interesting
itemsets using a probabilistic model for binary
databases. Technical report, Univ. Bristol, 2009.

[De Bie, 2011] Tijl De Bie. An information theo-
retic framework for data mining. In Chid Apté,
Joydeep Ghosh, and Padhraic Smyth, editors,
ACM SIGKDD, pages 564–572. ACM, 2011.

[Duval and Malliaros, 2021] Alexandre Duval and
Fragkiskos D. Malliaros. Graphsvx: Shapley
value explanations for graph neural networks. In
ECML PKDD 2021, pages 302–318, 2021.

[Huang et al., 2020] Qiang Huang, Makoto Ya-
mada, Yuan Tian, Dinesh Singh, Dawei Yin, and
Yi Chang. Graphlime: Local interpretable model
explanations for graph neural networks. CoRR,
abs/2001.06216, 2020.

[Kazius et al., 2005] Jeroen Kazius, Ross
McGuire, and Roberta Bursi. Derivation
and validation of toxicophores for mutagenicity
prediction. Jour. med. chem., 48(1):312–320,
2005.

[Kipf and Welling, 2017] Thomas N. Kipf and
Max Welling. Semi-supervised classification
with graph convolutional networks. In 5th In-
ternational Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenRe-
view.net, 2017.

[Luo et al., 2020] Dongsheng Luo, Wei Cheng,
Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. Parameterized ex-
plainer for graph neural network. In Advances
in Neural Information Processing Systems 33,
NeurIPS 2020, 2020.

[Molnar, 2020] C. Molnar. Interpretable machine
learning. Lulu.com, 2020.

[Morris et al., 2020] Christopher Morris, Nils M.
Kriege, Franka Bause, Kristian Kersting, Pe-
tra Mutzel, and Marion Neumann. TUDataset.
CoRR, abs/2007.08663, 2020.

[Pope et al., 2019] Phillip E. Pope, Soheil Kolouri,
Mohammad Rostami, Charles E. Martin, and
Heiko Hoffmann. Explainability methods for
GCN. In IEEE CVPR, pages 10772–10781,
2019.

[Schnake et al., 2020] Thomas Schnake, Oliver
Eberle, Jonas Lederer, Shinichi Nakajima,
Kristof T. Schütt, Klaus-Robert Müller, and
Grégoire Montavon. XAI for graphs. CoRR,
abs/2006.03589, 2020.

[Veyrin-Forrer et al., 2021] Luca Veyrin-Forrer,
Ataollah Kamal, Stefan Duffner, Marc Plantevit,
and Céline Robardet. On GNN explanability
with activation patterns. https://hal.archives-
ouvertes.fr/hal-03367714, 2021.

[Vu and Thai, 2020] Minh N. Vu and My T. Thai.
Pgm-explainer: Probabilistic graphical model
explanations for graph neural networks. In
NeurIPS 2020, 2020.

[Wu et al., 2017] Zhenqin Wu, Bharath Ramsun-
dar, Evan N. Feinberg, Joseph Gomes, Caleb
Geniesse, Aneesh S. Pappu, Karl Leswing,
and Vijay S. Pande. Moleculenet. CoRR,
abs/1703.00564, 2017.

[Yan and Han, 2002] Xifeng Yan and Jiawei Han.
GSPAN: Graph-based substructure pattern min-
ing. In (ICDM 2002), pages 721–724. IEEE
Computer Society, 2002.

[Ying et al., 2019] Zhitao Ying, Dylan Bourgeois,
Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
Gnnexplainer: Generating explanations for
graph neural networks. In NeurIPS 2019, pages
9240–9251, 2019.

[Yuan et al., 2020a] Hao Yuan, Jiliang Tang, Xia
Hu, and Shuiwang Ji. XGNN: towards model-
level explanations of graph neural networks. In
ACM SIGKDD, pages 430–438, 2020.

[Yuan et al., 2020b] Hao Yuan, Haiyang Yu, Shu-
rui Gui, and Shuiwang Ji. Explainability in graph
neural networks: A taxonomic survey. CoRR,
abs/2012.15445, 2020.

	Introduction
	Method
	GNN Embedding Vectors
	Activation Rules
	Characterizing Activation Rules With Subgraphs

	Experiments
	Conclusion

