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Abstract

In a large number of applications, the processing relies on objects or areas of

interest, therefore the pixel-based image representation is not well adapted. These

applications would bene�t from a region-based processing. Early examples of region-

based processing can be found in the �eld of image segmentation, such as the

quadtree. Recently, in mathematical morphology, the connected operators have

received much attention. They are region-based �ltering tools that act by merging

�at zones. They have good contour preservation properties in the sense that they

do not create any new boundaries, neither do they shift the existing ones.

One popular implementation for connected operators relies on tree-based image

representations, especially threshold decomposition representations and hierarchical

representations. These tree-based image representations are widely used in many

image processing and computer vision applications. Tree-based connected operators

consist in constructing a set of nested or disjoint connected components, followed

by a �ltering of these connected components based on an attribute function char-

acterizing each connected component. Finally, the �ltered image is reconstructed

from the simpli�ed tree composed of the remaining connected components.

In the work presented in this thesis, we propose to expand ideas about tree-

based connected operators. We introduce the notion of tree-based shape spaces,

built from tree-based image representations. Many state-of-the-art methods relying

on tree-based image representations consist of analyzing this shape space. A �rst

consequence of this change of point of view is our proposition of a local feature

detector, called the tree-based Morse regions (TBMR). It can be seen as a variant

of the MSER method. The selection of TBMRs is based on topological information,

and hence it extracts the regions independently of the contrast, which makes it truly

contrast invariant and quasi parameter free. The accuracy and robustness of the

TBMR approach are demonstrated by the repeatability test and by applications

to image registration and 3D reconstruction, as compared to some state-of-the-art

methods.

The basic idea of the main proposition in this thesis is to apply connected �lters

to the shape space. Such processing is called the framework of shape-based morphol-

ogy. It is a versatile framework that deals with region-based image representations.

It has three main consequences. 1) For �ltering purposes, the classical existing tree-

based connected operators are generalized. Indeed, the framework encompasses

classical existing connected operators by attributes. Besides, this also allows us to

propose two classes of novel connected operators: shape-based lower/upper levelings
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and shapings. 2) This framework can be used for object detection/segmentation by

selecting relevant points in the shape space. 3) We can also employ this frame-

work to transform the hierarchies using the extinction values, in order to obtain a

hierarchical simpli�cation or segmentation.

Some applications are developed using the framework of shape-based morphol-

ogy to demonstrate its usefulness. The applications of the shape-based �ltering for

retinal image analysis show that a mere �ltering step, which we compare to more

evolved processings, achieves state-of-the-art results. An e�cient shaping used for

image simpli�cation is proposed by minimizing Mumford-Shah functional subordi-

nated to the topographic map. For object detection/segmentation, we proposed

a context-based energy estimator that is suitable to characterize object meaning-

fulness. Eventually, we extend the hierarchy of constrained connectivity using the

aspect of hierarchy transformation.

Keywords: image processing, mathematical morphology, connected �lters, tree

representations, hierarchies, local feature detections, retinal image analysis, image

simpli�cation/segmentation.
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Résumé

Dans un grand nombre d'applications, le traitement repose sur des objets ou

des zones d'intérêt, et la représentation d'image à base de pixels n'est pas bien

adaptée. Ces applications pourraient béné�cier d'un traitement basé sur régions.

Les premiers exemples de traitement basé sur région peuvent être trouvés dans le

domaine de la segmentation d'image, par exemple, le quadtree. Récemment, en

morphologie mathématique, les opérateurs connexes ont reçu beaucoup d'attention.

Ce sont des outils de �ltrage basé sur région qui agissent en fusionnant des zones

plates. Ils ont de bonnes propriétés de conservation de contour dans le sens qu'ils ne

créent pas de nouveaux contours, et qu'ils ne déplacent pas les contours existants.

Une implémentation populaire des opérateurs connexes repose sur une représen-

tation d'image à base d'arbres, notamment les représentations basées sur la dé-

composition par seuillage et les représentations hiérarchiques. Ces représentations

d'image à base d'arbres sont largement utilisées dans de nombreuses applications

de traitement d'image et de vision par ordinateur. Les opérateurs connexes à base

d'arbres sont construites par la construction d'un ensemble de composantes con-

nexes emboîtées ou disjointes, suivi d'un �ltrage de ces composantes connexes basé

sur une fonction d'attribut caractérisant chaque composante connexe. Finalement,

l'image �ltrée est reconstruite à partir de l'arbre simpli�é, composé des composantes

connexes restantes.

Dans le travail présenté dans cette thèse, nous proposons d'élargir les idées des

opérateurs connexes à base d'arbres. Nous introduisons la notion d'espaces de formes

à base d'arbres, construit à partir des représentations d'image à base d'arbres. De

nombreuses méthodes de l'état de l'art, s'appuyant sur ces représentations d'images

à base d'arbres, consistent à analyser cet espace de forme. Une première conséquence

de ce changement de point de vue est notre proposition d'un détecteur de carac-

téristiques locales, appelé les �tree-based Morse regions� (TBMR). Cette approache

peut être considérée comme une variante de la méthode des MSER. La sélection des

TBMRs est basé sur des informations topologiques, et donc extrait les régions in-

dépendamment du contraste, ce qui la rend vraiment invariante aux changements de

contraste; de plus, la méthode peut être considérée sans paramètres. La précision et

la robustesse de l'approche TBMR sont démontrées par le test de reproductibilité et

par des applications au recalage d'image et à la reconstruction 3D, en comparaison

des méthodes de l'état de l'art.

L'idée de base de la proposition principale dans cette thèse est d'appliquer les

opérateurs connexes à l'espace des formes. Un tel traitement est appelé la mor-
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phologie basée sur la forme. Ce cadre polyvalent traite des représentations d'images

à base de région. Il a trois conséquences principales. 1) Dans un but de �ltrage,

il s'agit d'une généralisation des opérateurs connexes à base d'arbres. En e�et, le

cadre englobe les opérateurs connexes classiques par attributs. En outre, il permet

également de proposer deux nouvelles classes d'opérateurs connexes: nivellements

inférieurs/supérieurs à base de forme et �shapings�. 2) Ce cadre peut être utilisé

pour la détection/segmentation d'objets en sélectionnant les points pertinents dans

l'espace des formes. 3) Nous pouvons également utiliser ce cadre pour transformer

les hiérarchies en utilisant les valeurs d'extinction, obtenant ainsi une simpli�ca-

tion/segmentation hiérarchique.

A�n de montrer l'utilité de l'approche proposée, plusieurs applications sont

développées. Les applications à l'analyse d'images rétinenne de �ltrage basé sur

la forme montrent qu'une simple étape de �ltrage, comparée à des traitements plus

évolués, réalise des résultats au niveau de l'état de l'art. Une application de �shap-

ing� pour la simpli�cation d'image est proposée, fondée sur une minimisation de

la fonctionnelle de Mumford-Shah subordonnée à l'arbre de formes. Pour la dé-

tection/segmentation d'objets, nous proposons un estimateur de l'énergie basée sur

le contexte. Cet estimateur est approprié pour caractériser la signi�cation d'objet.

En�n, nous étendons le cadre de la connectivité contrainte en utilisant l'aspect de

transformation de hiérarchie.

Mots-clefs: traitement d'images, morphologie mathématique, opérateurs con-

nexes, représentations d'arbre, hiérarchies, extraction de caractéristiques locales,

analyse d'image rétinienne, simpli�cation/segmentation d'image.
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Résumé long

Résumé

Le cadre classique des �ltres connexes consiste à enlever d'un graphe certaines de

ses composantes connexes. Pour appliquer ces �ltres, il est souvent utile de trans-

former une image en un arbre de composantes, et on élague cet arbre pour simpli�er

l'image de départ. Les arbres ainsi formés ont des propriétés remarquables pour

la vision par ordinateur. Une première illustration de leur intérêt est la dé�nition

d'un détecteur de zones d'intérêt, vraiment invariant aux changements de contraste,

qui nous permet d'obtenir des résultats à l'état de l'art en recalage d'images et en

reconstruction 3D à base d'images. Poursuivant dans l'utilisation de ces arbres,

nous proposons d'élargir le cadre des �ltres connexes. Pour cela, nous introduisons

la notion d'espaces des formes basés sur des arbres : au lieu de �ltrer des com-

posantes connexes du graphe correspondant à l'image, nous proposons de �ltrer des

composantes connexes du graphe donné par l'arbre des composantes de l'image. Ce

cadre général, que nous appelons morphologie basée sur les formes, peut être utilisé

pour la détection et la segmentation d'objets, l'obtention de segmentations hiérar-

chiques, et le �ltrage d'images. De nombreuses applications et illustrations montrent

l'intérêt de ce cadre.

Mots Clefs

Traitement d'image, morphologie mathématique, �ltrage connexe, représentation

arborescente, segmentation hiérarchique, détection de zones d'intérêt.

A Introduction

En morphologie mathématique, les opérateurs connexes [Serra 1993, Salembier 1995,

Salembier 1998, Salembier 2009] ont reçu beaucoup d'attention. Ce sont des outils

de �ltrage basés sur régions qui agissent en fusionnant des zones plates. Ils ont de

bonnes propriétés de conservation des contours dans le sens qu'ils ne créent pas de

nouveaux contours, et qu'ils ne déplacent pas les contours existants.

Une implémentation populaire des opérateurs connexes repose sur les représenta-

tions d'images en arbres [Salembier 1998, Monasse 2000b, Salembier 2000]. Dans la

pratique, pour des questions d'e�cacité, les algorithmes des �ltres connexes reposent

sur ces représentations arborescentes, et comprennent trois étapes : une construction

d'arbre représentant l'image à traiter, l'élagage de cet arbre, et la reconstruction de
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Figure 1: Opérateurs connexes basés sur l'arbre (chemin noir) et notre proposition

(en ajoutant le chemin rouge).

l'image correspondant à l'arbre simpli�é. Un exemple d'un tel processus est illustré

en Figure 1 par le chemin noir. Dans le travail présenté dans cette thèse, nous pro-

posons tout d'abord une première illustration de l'intérêt de ces arbres : un détecteur

de zones d'intérêt que nous appelons �tree-based Morse regions� (TBMR). Cette ap-

proche peut être considérée comme une variante de la méthode MSER [Matas 2002].

La sélection des TBMRs est basée sur l'information topologique ; les régions sont

donc extraites indépendamment de leur contraste. Au �nal, la méthode est donc

totalement invariante aux changements de contraste des images à traiter. De plus,

TBMR est quasiment sans paramètre. Nous avons obtenu des résultats au niveau de

l'état de l'art pour le test de répétabilité [Mikolajczyk 2005], et pour des applications

au recalage d'image et à la reconstruction 3D à base d'images.

En allant plus loin dans l'utilisation de ces arbres, nous proposons d'élargir le

cadre des opérateurs connexes. Pour cela, nous introduisons la notion d'espaces des

formes basés sur des arbres. Un espace des formes est un graphe connexe non-dirigé

dont chaque n÷ud correspond à un n÷ud (composante connexe) dans l'arbre, et la

relation de voisinage est donnée par la relation de parenté de l'arbre. L'idée princi-

pale dans cette thèse est d'appliquer les opérateurs connexes à l'espace des formes, au

lieu de s'appuyer directement sur l'espace de l'image. Un tel traitement est appelé la

morphologie basée les formes. C'est un cadre général ayant trois conséquences prin-

cipales. 1) Ce cadre peut être utilisé pour la détection et la segmentation d'objets

en sélectionnant les n÷uds pertinents dans l'espace des formes. 2) Nous pouvons

également utiliser ce cadre pour obtenir des simpli�cations d'images et des seg-

mentations hiérarchiques. 3) Dans un but de �ltrage, il s'agit d'une généralisation

des opérateurs connexes à base d'arbres. En e�et, le cadre englobe les opérateurs

connexes classiques par attributs. En outre, il permet également de proposer deux
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Figure 2: Une image (à gauche), ses Max-tree et Min-tree (au milieu), et son arbre

des formes (à droite).

nouvelles classes d'opérateurs connexes : des nivellements inférieurs/supérieurs à

base de formes et des �shapings�. L'intérêt de ces trois aspects du cadre proposé est

démontré par des applications et des illustrations.

Le reste de ce résumé long est structuré de la façon suivante. Nous rappelons

l'état de l'art dans la Section B, suivie par notre proposition d'un détecteur de zones

d'intérêt dans la Section C. Puis nous introduisons la notion d'espaces des formes

dans la Section D, et nous détaillons le cadre de la morphologie basée sur les formes

dans la Section E. Nous montrons quelques illustrations et applications de ce cadre

dans la Section F. En�n, la section G conclut le résumé long.

B Travaux liés

B.1 Représentations arborescentes

Nous distinguons deux types de représentations d'images en arbres. Le premier type

est basé sur une décomposition d'image par seuillage ; le second type est la famille

des hiérarchies de segmentations, une hiérarchie étant constitué d'un ensemble de

segmentations allant des plus �nes aux plus grossières.

Arbres basés sur la décomposition d'image par seuillage. Pour tout λ ∈ R,
l'ensemble supérieur Xλ et l'ensemble inférieur X λ d'une image f : Ω → R sont

dé�nis respectivement par Xλ(f) = {p ∈ Ω | f(p) ≥ λ} et X λ(f) = {p ∈ Ω |
f(p) ≤ λ}. Les deux ensembles de niveaux supérieur et inférieur ont une structure

d'inclusion naturelle : ∀λ1 ≤ λ2, Xλ1 ⊇ Xλ2 and X λ1 ⊆ X λ2 , ce qui conduit à deux
représentations distinctes d'une image, le Max-tree et le Min-tree [Salembier 1998].

Un autre arbre, appelé arbre des formes, a été introduit dans [Monasse 2000b].

Une forme est dé�nie comme une composante connexe d'un ensemble supérieur ou

inférieur dans laquelle ses trous ont été bouchés. La relation d'inclusion entre les

formes donne un arbre unique qui est l'arbre des formes. Un exemple de ce type

d'arbre est donné en Figure 2.
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Hiérarchie de segmentations. Les hiérarchies de segmentations sont dev-

enues très populaires dans le domaine de la segmentation d'images [Guigues 2006].

Un exemple de hiérarchie de segmentations est l'arbre binaire de parti-

tions [Salembier 2000], créé par un processus de fusion de régions. Un deuxième

arbre populaire est l'arbre couvrant de poids minimal [Kruskal 1956]. Un dernier

exemple est l'α-tree [Ouzounis 2011a], connu aussi sous le nom de hiérarchie de

connectivité contrainte [Soille 2008]. Toutes ces hiérarchies de segmentations peu-

vent produire des cartes de saillance [Najman 1996], et peuvent être données sous

la forme équivalente de ligne de partage des eaux ultramétrique [Najman 1996,

Najman 2011].

Toutes les représentations en arbres sont multi-échelles au sens de la théorie

d'analyse ensembles-échelles [Guigues 2006], ce qui fournit un espace réduit de

recherche d'objets. Par ailleurs, les arbres basés sur une décomposition par seuil-

lages sont covariant aux transformations (topologiques) continues, et ils sont aussi

invariants aux transformations a�nes des intensités d'image. De plus, l'arbre des

formes et l'α-tree sont des structures auto-duales.

B.2 Opérateurs connexes

Les opérateurs connexes [Serra 1993, Salembier 1995, Salembier 1998,

Salembier 2009] ne modi�ent pas la valeur des pixels individuellement mais

agissent au niveau des composantes connexes où le signal est constant, connue

par le terme zones plates [Salembier 1995]. Les opérateurs connexes fusionnent les

zones plates adjacentes. Ils ne peuvent pas introduire un contour qui n'est pas

présent dans l'image originale. Ils ne peuvent pas non plus déplacer les contours

existants. Les opérateurs connexes ont été originellement dé�nis via le concept de

partition des zones plates. Désignons par P une partition et par P(p) la région

de la partition qui contient le pixel p. Un ordre partiel entre partitions peut être

créé : P1 est plus ��ne" que P2 (ce que l'on note P1 v P2), si ∀ p,P1(p) ⊆ P2(p).

Les opérateurs connexes sont alors dé�nis comme suit :

Dé�nition 1 Un opérateur ϕ est connexe si la partition des zones plates Pf de

l'image f est toujours plus �ne que celle Pϕ(f) de l'image ϕ(f).

Une implémentation populaire des opérateurs connexes repose sur les représenta-

tions arborescentes. Le �ltrage consiste alors à concevoir un attribut caractérisant

la forme des composantes ou le degré de ressemblance entre la forme des composantes

vis-à-vis d'une forme attendue. Il y a deux types d'approches pour �ltrer l'arbre

(donc pour �lter l'image). Le premier type est l'élagage d'arbres. L'autre repose

sur le seuillage par attribut.
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Figure 3: Une image synthétique, son Min-tree (au milieu) et son Max-tree (à

droite). Les régions critiques sont représentées par des cercles rouges : ce sont

des n÷uds ayant plus d'un enfant et et les feuilles. Les TBMRs sont les régions

correspondants aux n÷uds remplis en rouge.

B.3 Applications liées aux représentations arborescentes

Il existe de nombreuses applications utilisant les représentations arborescentes en

traitement d'images et en vision par ordinateur. Nous détaillons brièvement la méth-

ode MSER [Matas 2002] dont la dé�nition originale ne repose pas sur les représenta-

tions en arbre. Cependant, cette méthode est facilement compréhensible en utilisant

le Max-tree et le Min-tree : elle extrait les régions (n÷uds) qui correspondent à des

minima locaux de la fonction de stabilité le long du trajet vers la racine de l'arbre. La

fonction de stabilité d'un n÷udN est donnée parAq(N ) = (|N+
∆ |−|N

−
∆ |)/|N |, où |·|

est l'aire, ∆ est un écart d'intensité de gris, N+
∆ et N−∆ sont respectivement l'ancêtre

le plus bas et le descendant le plus haut de telle sorte que |f(N+
∆ ) − f(N )| ≥ ∆

et |f(N ) − f(N−∆ )| ≥ ∆. Il est rapporté dans [Mikolajczyk 2005] que la méthode

MSER atteint une répétabilité et une précision au niveau de l'état de l'art.

C �Tree-based Morse regions�

D'après la théorie de Morse [Milnor 1963], la topologie d'une image f est directe-

ment liée à l'analyse des points critiques : les minima, maxima, et points-selles de

f . Plus précisément, suivant [Caselles 2009], nous proposons de choisir des régions

critiques dans les Max-tree STM et Min-tree STm . Les régions critiques sont les

feuilles de l'arbre et les régions résultant d'une fourche dans l'arbre. Pour chaque

région critique, une échelle est sélectionnée. Nous associons à chaque région cri-

tique Rc la plus grande région contenant Rc et topologiquement équivalente dans

son arbre. Nous appelons notre méthode �tree-based Morse regions� (TBMR). Un

exemple d'extraction de TBMRs est illustré en Figure 3. Dans la pratique, nous

ne considérons pas les TBMRs qui sont trop petits ou trop grands. Les rejets de

petites régions est e�ectuée avant l'analyse, ce qui signi�e qu'ils ne pas contribuent
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Figure 4: Le score de répétabilité (à gauche) et le nombre de correspondances (à

droite) pour les séquences Wall, Bark, Trees, Leuven (de haut en bas, et de gauche

à droite).

aux changements topologiques. Ce processus élimine aussi un peu de bruit sans

modi�er les autres composantes. Dans nos expériences, nous avons toujours �xé

cette limite inférieure à 30 pixels, et la limite supérieure de taille des composantes

considérées est �xée à 1% de la taille de l'image.

La méthode TBMR a plusieurs avantages : comme elle utilise seulement une in-

formation topologique, elle est indépendante du contraste de l'image. Elle est égale-

ment covariante aux transformations (topologiques) continues tels que les trans-

lations, les changements d'échelle, ou les rotations. Elle est également robuste

aux distorsions géométriques locales. En outre, elle est essentiellement exempte

de paramètres : seulement deux paramètres non signi�catifs sont appliqués (pour

ignorer les régions trop petites ou trop grandes).

Des tests de répétabilité [Mikolajczyk 2005] (Figure 4) montrent la précision et

la robustesse de l'approche TBMR. Nous obtenons des résultats à l'état de l'art

pour l'application de TBMR au recalage d'image et à la reconstruction 3D à base

d'images. Le TBMR est meilleur en particulier que MSER pour ces applications.

D Espaces des formes

Il existe des caractéristiques communes à tous les arbres. Ces arbres sont composés

d'un ensemble des régions (composantes connexes), de petites à grandes. Chaque ré-

gion est représentée par un n÷ud dans l'arbre. Le n÷ud racine de l'arbre représente

le domaine de l'image entière. Par ailleurs, pour deux régions distinctes R1 et

R2 représentées par deux n÷uds N1 et N2 de l'arbre, nous avons une propriété

d'emboîtement : R1 ∩ R2 6= 0 ⇒ R1 ⊂ R2 ou R2 ⊂ R1. À l'exception du n÷ud

racine, chaque n÷ud N de l'arbre a un parent unique Np, et il existe une arête
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(N ,Np) re�étant le lien de parenté, c'est-à-dire, la relation d'inclusion entre les

deux régions qu'ils représentent. En conséquence, les représentations arborescentes

d'image peuvent être considérées comme des graphes connexes, ce qui donne la

dé�nition d'espace des formes basés sur l'arbre ST .

Dé�nition 2 Un espace des formes basé sur un arbre T noté par ST est un graphe

non-dirigé connexe, où V (ST ) = {N | N ∈ T }, et E(ST ) est composé de l'ensemble

des arêtes qui modélisent la relation d'inclusion.

Les espaces des formes basés sur les arbres ont quelques propriétés fondamen-

tales. Tout d'abord, un espace des formes ST est équivalent à une image f , dans

le sens où l'image f peut être reconstruite à partir de l'arbre T . De plus, tous les

espaces des formes satisfont le principe de causalité, certainement le principe le plus

fondamental de l'analyse multi-échelles [Guigues 2006]. D'après ce principe, pour

tout couple d'échelles λ2 > λ1, les �structures� trouvées à l'échelle λ2 devraient trou-

ver une �cause� à l'échelle λ1. En e�et, une région d'un certain niveau dans l'arbre

appartient à une branche de l'arbre qui correspond à un ensemble allant d'une région

très �ne jusqu'à l'image entière. Ainsi, tous les espaces des formes peuvent être con-

sidérés comme des représentations multi-échelles. Par ailleurs, contrairement aux

espaces d'échelles linéaires, le contour d'une forme donnée (composante connexe)

correspond au contour réel de l'image sans ��ou�.

E Morphologie basée sur les formes

Un espace des formes basé sur l'arbre ST est un graphe connexe qui est équiva-

lent à l'espace de l'image. Chaque n÷ud dans l'espace de l'image correspond à un

point pondéré par une fonction d'intensité f . La connexité de l'espace de l'image

est généralement la 4-connexité (resp. 6-connexité) ou la 8-connexité (resp. 26-

connexité) dans les images 2D (resp. images 3D). Par contraste, chaque n÷ud dans

l'espace des formes est une composante connexe pondérée par une fonction d'attribut

A. La connexité entre les n÷uds de l'espace des formes est donnée par le lien de

parenté dans l'arbre des composantes.

Un �ltrage très simple consiste à enlever les composantes connexes dont l'attribut

est trop faible. Mais il existe de nombreux �ltres beaucoup plus sophistiqués. Nous

proposons d'appliquer les opérateurs connexes dans les espaces des formes. Nous

appelons ce processus morphologie basée sur les formes; il est illustré en Figure 1 en

ajoutant le chemin rouge. Ainsi, le �ltrage se fait non pas dans l'espace de l'image,

mais dans l'espace des formes construits sur l'image. En procédant de cette manière,

nous généralisons les �ltres connexes existants. Nous pouvons utiliser ce cadre non
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Figure 5: Un exemple de détection d'objets. Dans les arbres, les cercles pleins

représentent les minima locaux, et les cercles pleins colorisés, les minima locaux

restant après �ltrage. En bas, les courbes montrent l'évolution de l'attribut, avant

et après �ltrage, le long de la branche entourée dans l'arbre. En haut à droite :

les objets signi�catifs détectés (contours colorisés) et une hiérarchie de détection

d'objets représentée sous la forme d'une carte de saillance.

seulement pour le �ltrage, mais aussi pour la détection/segmentation d'objets et la

segmentation hiérarchique.

Filtrage. Le cas classique est celui où l'attribut A est croissant. Dans ce cas,

le Min-tree T T est isomorphe au premier arbre T . Suivre le chemin rouge est

équivalent à suivre le chemin noir. Ceci montre que notre proposition englobe le cas

classique. Cependant, un attribut A décrivant les formes est le plus souvent non-

croissant. Dans ce cas là, T T est di�érent de T . Si le second attribut est identique

au premier attribut, alors l'élagage de TT est équivalent au seuillage de T.

Dans le cas général, le second attribut AA est di�érent de A. Cela nous per-

met d'introduire deux nouvelles familles d'opérateurs connexes. Quand l'espace des

formes est basé sur un Max-tree (resp. Min-tree), nous appelons ce type de �ltres

des nivellements supérieurs (resp. inférieurs) basés sur les formes. Quand l'espace

des formes est donné par une représentation arborescente auto-duale, plus partic-

ulièrement un arbre des formes, nous appelons �shapings� cette famille de �ltres.
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Détection/segmentation d'objets. Les espaces des formes fournissent un es-

pace réduit de recherche. Si on veut détecter un seul objet dans l'image, on peut

simplement repérer le n÷ud ayant l'attribut le plus signi�catif ; il correspond à la

forme de l'objet le plus probable. Mais dans le cas général, le nombre d'objets à dé-

tecter dans l'image est inconnu. Nous proposons alors d'identi�er ces objets comme

étant ceux qui correspondent aux minima locaux de l'espace des formes. Cepen-

dant, ces minima sont souvent trop nombreux. Pour résoudre ce problème, nous

proposons d'appliquer un �ltre connexe dans l'espace des formes, ce qui va éliminer

les minima non signi�catifs. Un exemple est donné en Figure 5.

Segmentation hiérarchique. En augmentant la force du �ltrage dans la méth-

ode de détection d'objets, de plus en plus minima locaux vont disparaître ou

être absorbés par des minima plus signi�catifs. Cette force de �ltrage peut être

mesurée par une valeur d'extinction [Vachier 1995] dé�nie sur l'ensemble de min-

ima locaux. Les valeurs d'extinction mesurent les persistances des minima donc

des objets. En faisant varier le seuil sur la valeur d'extinction, nous hiérarchisons

les minima locaux. Cette hiérarchie peut être utilisée pour simpli�er (enlever les

objets les moins persistants), ou pour segmenter (garder des objets persistants).

Une telle hiérarchie peut se représenter sous la forme d'une image de saillance des

contours [Najman 1996, Najman 2011, Guigues 2006] : le contour de chaque mini-

mum peut être pondéré par la valeur d'extinction pour laquelle il disparaît dans la

hiérarchie. On obtient ainsi une image de contours dans laquelle les objets les plus

signi�catifs ont les contours les plus brillants.

F Quelques illustrations du cadre

Dans cette section, nous présentons quelques illustrations et applications de notre

cadre : en détection d'objets (Section F.1) ; en étendant la notion de connectivité

contrainte (Section F.2) ; en �ltrages (Section F.3).

F.1 Segmentation d'objets

Nous avons appliqué la méthode de segmentation d'objet à la segmentation de

nerfs optiques dans des image de fond d'oeil. Sur la base de données DRI-

ONS [Carmona 2008], nous obtenons des résultats à l'état de l'art. Nous avons

aussi introduit dans [Xu 2012] un critère original pour la détection d'objets. Ce

critère est fondé sur une énergie de type �contours actifs�. Une application à la

détection d'objets en utilisant ce critère est illustré en Figure 6.
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Figure 6: Un résultat de détection d'objets.

F.2 Extension de la connectivité contrainte

Nous avons appliqué notre cadre pour étendre la connectivité con-

trainte [Soille 2008]. Il s'agit ici de simpli�er une hiérarchie de zones plates par un

critère croissant. Nous proposons de remplacer l'attribut croissant par un attribut

non croissant inspiré de [Felzenszwalb 2004] et d'utiliser notre cadre pour produire

une segmentation hiérarchique. La Figure 7 montre un exemple d'application. Les

résultats des tests dans la base de données de BSDS500 [Arbelaez 2011] sont donnés

dans la Table 1.

Figure 7: Exemple de segmentation hiérarchique. En haut : l'image originale et la

carte de saillance obtenue ; en bas : deux segmentations extraites de la hiérarchie.
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Method
GT Covering PRI

ODS OIS Best ODS OIS

FH [Felzenszwalb 2004] 0.43 0.53 0.68 0.76 0.79

Guimarães [Guimarães 2012] 0.46 0.53 0.60 0.76 0.81

Ours 0.50 0.57 0.66 0.77 0.82

Table 1: Evaluation de notre segmentation hiérarchique.

F.3 Illustration des nouveaux �ltres

La Figure 8 montre une comparaison entre la méthode de seuillage utilisant l'attribut

de circularité, un �shaping� avec le même attribut et un autre �shaping� reposant

sur une combinaison de la circularité et du moment d'inertie divisé par l'aire au

carré. Dans la Figure 9, nous montrons des exemples de �shaping� reposant sur un

critère issu de l'énergie de Mumford-Shah. L'espace des formes utilisé est ici l'arbre

des formes [Monasse 2000b]. Cette méthode est décrite dans [Xu 2013]. Nous avons

appliqué le nivellement supérieur à base des formes à la segmentation de vaisseaux

dans les images rétiniennes. Nous avons obtenu des résultats au niveau de l'état de

l'art avec ce simple �ltre.

G Conclusion

Dans cet thèse, nous avons introduit la notion d'espaces des formes basés sur les

arbres. Une première illustration de l'intérêt des structures arborescentes est la

conception d'un détecteur de zone d'intérêt, vraiment invariant aux changements de

contraste. Ce détecteur obtient des résultats à l'état de l'art en recalage d'images

et en reconstruction 3D à base d'images. Notre principale proposition est le cadre

que nous appelons morphologie basée sur les formes. L'idée de base est d'appliquer

des �ltres connexes dans l'espaces des formes au lieu de l'espace de l'image. Ce

cadre nous permet d'introduire deux nouveaux types d'opérateurs connexes : des

nivellements supérieurs/inférieurs basés sur les formes et les �shapings�. Nous avons

montré que ce cadre peut être utilisé pour la détection et la segmentation d'objets.

Par ailleurs, ce cadre nous permet d'obtenir des segmentations hiérarchiques.
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(a) Image d'entrée. (b) �Shaping� 1.

(c) Seuillage faible. (d) Seuillage fort.

(e) Combinaison de seuillage. (f) �Shaping� 2.

Figure 8: Comparaison entre le "shaping" et un seuillage dans l'espace des formes :

en (b,c,d), le critère est un attribut de forme ; en (e,f), l'attribut est une combinaison

de plusieurs attributs de forme.
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Figure 9: Deux résultats de pré-segmentations obtenues par �shaping� utilisant un

critère fondé sur l'énergie de Mumford-Shah ; l'espace des formes est ici créé à partir

de l'arbre des formes.
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Chapter 1

Introduction

An image to be processed is usually modeled as a discrete function de�ned on

pixels or voxels over a 2D or 3D domain. There exist also many other image rep-

resentations which decompose the image into primitive or fundamental elements,

so that it can be more easily interpreted. Indeed, an increasing number of appli-

cations in image processing and computer vision are not e�ciently handled when

using the classical pixel-based processing approaches. Content-based image com-

pression or indexing, as well as many biomedical and remote sensing applications

are such instances. In these applications, low-level processing would bene�t from

region-based representations, super-pixels for instance. In this PhD thesis, we are

interested in a particular type of region-based representations: the tree-based im-

age representations. Such representations have been popularized by connected �l-

ters [Serra 1993, Salembier 1995, Salembier 1998, Salembier 2009]. Besides, there

are many applications in image processing and computer vision relying on this kind

of image representation. This PhD thesis proposes a general framework to ana-

lyze tree-based image representations, so as to process and analyze images. This

framework o�ers several processing aspects, ranging from �ltering to object detec-

tion/segmentation, and hierarchy transformation. Those aspects lead to several

applications developed in the work presented in this thesis. In this introductory

chapter, we will �rst shortly review two types of tree-based image representations

in Section 1.1. (the detailed introduction to tree-based image representations will

be found later in the �rst chapter of Part II). The context of this thesis is described

in Section 1.2. Our main contributions are summarized in Section 1.3. Finally,

Section 1.4 presents the overall structure of this thesis report.

1.1 Image representations

A classical image model is a function de�ned on pixels of an image domain. It can

be seen as a node weighted graph. The set of vertices of this graph is the set of

pixels, and the edges of the graph encode the neighborhood relationship between

pixels. Many applications in image processing and computer vision interact with

some primitives of fundamental elements being more meaningful than the pixels.
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There are several image representations speci�c to some applications, such as the

Fourier transform or the wavelet transform. The former is often used in applica-

tions such as geometric analysis, image denoising, image deblurring, or registration,

and the later is usually used for image compression and texture analysis. The im-

age representations which we are interested in are the region-based representations.

They are composed of a set of regions of the original image. These regions are

either disjoint or are organized thanks to an inclusion relationship. These image

representations can be divided into two categories: hierarchical representations and

threshold decompositions.

1.1.1 Hierarchical representations

The �rst type of the region-based representations is the hierarchy of segmentation,

known also as pyramids [Pavlidis 1979, Rosenfeld 1984, Jolion 1994]. A hierarchy

of segmentation is composed of a set of partitions going from �ne to coarse. It

can be represented by a tree structure, whose root node represents the entire image

as a single region, and whose leaves correspond to the regions of the �nest image

partition. The other nodes lying between the root and the leaves represent the

regions obtained by the fusion of all the regions represented by its children. The

hierarchy of segmentation is a multi-resolution/multi-scale image representation.

However, unlike many scale-space based representations, all the regions encoded in

this hierarchy are actually �present� in the original image. In fact, the hierarchy

of segmentation provides a tremendously reduced space of candidate regions to be

processed for those applications that interact with objects, or areas of interest.

A �rst example of this type of image representation is the quadtree, popularized

in the early 1970's [Finkel 1974]. A quadtree is created in a top-down way by recur-

sively subdividing the regions of the image into quadrants or regions. It has been

shown to be useful in many applications such as image compression or image segmen-

tation. Another popular strategy to create a hierarchy of segmentation is bottom-up.

some noticeable examples are the minimum spanning tree (MST) [Kruskal 1956],

the α-tree [Ouzounis 2011a, Nagao 1979, Soille 2008, Meyer 2000], and the bi-

nary partition tree (BPT) [Salembier 2000]. Those hierarchies are widely used

in image simpli�cation/segmentation, and connected �ltering. A hierarchy of

segmentation is usually represented through a special type of tree called den-

drogram. It can be e�ciently represented by a saliency map [Najman 1996],

which has been popularized by Arbeláez under the name of �ultrametric contour

map� [Arbeláez 2006a, Arbelaez 2011]. A powerful tool to compute a saliency map,

so does a hierarchy of segmentation, is the ultrametric watershed [Najman 2009].

Actually, it has been shown in [Najman 2011] that any hierarchical image segmen-
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tation is equivalent to an ultrametric watershed. Details about hierarchical repre-

sentations will be reviewed in Section 2.3.

1.1.2 Threshold decompositions

The second type of region-based representations is based on threshold decom-

positions [Beucher 1992], as developed in mathematical morphology [Serra 1982,

Serra 1988, Soille 2003, Najman 2010]. Unlike the hierarchy of segmentation, which

depends usually on image contrast, the image representations based on threshold

decompositions is contrast-invariant. It relies only on the pixel-value ordering, and,

for any increasing contrast changes, the order between pixels remains the same.

One of the simplest representations given by threshold decompositions is based

on the upper level sets' {x | f(x) ≥ λ} decomposition. The upper level sets are non-

increasing with respect to the threshold values λ. This property allows to embed the

set of upper level sets (with decreasing threshold values λ) into a tree structure called

Max-tree [Salembier 1998]. The root of this tree denotes the entire image domain,

and the leaves are the local regional maxima of the image. By duality, the Min-tree

is de�ned as the tree representation based on the lower level sets {x | f(x) ≤ λ}; the
leaves of the Min-tree are the local regional minima in the image. Note that the

upper/lower level sets of an image f are the same as the ones of the image f ′ obtained

by any increasing contrast change applied to f . Any contrast-invariant processing

applied to an image can be interpreted as a geometric processing acting on those

level sets and preserving their order. Eventually, the output image is reconstructed

from these processed level sets.

The Max-tree and Min-tree representations consider respectively the local max-

ima and minima in a di�erent way. However, the objects of interest in an image

can be bright, or dark. Many applications need to rely on the self-dual property:

the bright and dark components are expected to be processed in the same man-

ner. Another tree representation based on the threshold decompositions, called the

topographic map [Caselles 1999] or the tree of shapes [Monasse 2000b], ful�lls this

condition. The topographic map is obtained using the inclusion relationship of the

shapes, where a shape is de�ned as the connected component of upper or lower level

sets with �lled holes. The topographic map is a self-dual, and non-redundant image

representation, and it is invariant to increasing contrast changes.

All those tree-based threshold decompositions are contrast-invariant. They are

also multi-scale representations composed of a set of included or disjoint regions

going from small ones to large ones. These trees have been popularized by connected

�lters, i.e., �lters that act by merging of �at zones. They are also proved to be useful

in many applications, such as local feature detection, image indexing, scenery images
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analysis, and classi�cation of images. More details about these three morphological

trees and some application examples will be presented respectively in Section 2.3

and in Section 2.6.

1.2 Context

In many low-level processing tasks such as image denoising and image �lters, the

classical pixel-based image representation is used. For example, in the case of lin-

ear �lters, and classical morphological operators such as dilation and erosion using

structuring elements, the processing strategy is to modify the values of each pixel

based on a function de�ned on a local window around this pixel. These tools are

not able to deal with the notion of regions.

In a large number of applications, the processing relies on objects or areas of

interests, therefore the pixel-based image representation is not well adapted. For in-

stance, in content-based image compression or indexing, one may want to selectively

encode areas of interest or act on some objects. In biomedical image analysis and

remote sensing, one is usually interested in some type of meaningful regions, such

as organs of interest or cells in biomedical images, and buildings or areas of trees

in remote sensing images. All those applications would bene�t from a region-based

processing.

Early examples of region-based processing can be found in the �eld of im-

age segmentation, such as the classical split-and-merge methods [Rosenfeld 1984].

Recently, in mathematical morphology, the connected operators [Salembier 1998,

Salembier 2009] have received much attention. They are region-based �ltering tools

that act by merging �at zones (connected components having constant values). They

have good contour preservation properties in the sense that they do not create any

new boundaries, neither do they shift the existing ones. Since the introduction of

connected operators, the related literature grows rapidly with theoretical studies,

algorithm developments, and many applications.

One popular implementation for connected operators relies on tree-based image

representations, notably threshold decomposition representations and hierarchical

representations. Tree-based connected operators consist in constructing a set of

nested or disjoint connected components, whose �ltering is based on an attribute

function that characterizes each connected component. Most of the �ltering strate-

gies are based on decisions made due to an individual analysis of these connected

components. Finally, the �ltered image is reconstructed from the simpli�ed tree

composed of the remaining connected components.

The tree-based image representations, especially the three morphological trees
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popularized by the connected operators have also been proved to be very useful

for many applications. For instance, the Max-tree and Min-tree representations

have been used for image simpli�cation and segmentation [Ballester 2007], visual-

ization of images [Wilkinson 2001, Westenberg 2007], local feature detection by the

method of maximally stable extremal regions (MSER) [Matas 2002], and classi�-

cation of images [Urbach 2007]. The topographic map has been used for mean-

ingful level lines selection [Cao 2005], preferential image segmentation [Pan 2009b],

scenery image analysis [Song 2002, Song 2003], and texture indexing [Xia 2010].

The success of the morphological trees in these applications is due to the inher-

ent multi-scale and contrast-invariant properties of these trees. Besides, these trees

can be computed e�ciently with existing algorithms. Another tree-based image

representation popularized by the connected operators is the binary partition tree

(BPT) [Salembier 2000]. This has been demonstrated to be very useful for object de-

tection/segmentation [Vilaplana 2008] due to the fact that the BPT is a multi-scale

representation which provides a tremendously reduced search space.

Region-based representations are intensively employed in image segmentation.

According to Marr's computational theory of vision [Marr 1983], a number of im-

age analysis systems are composed of two stages: low level analysis (characteris-

tic points, contours, regions . . .) and high level vision tasks (object recognition,

scene interpretation . . .). It is also assumed that the low-level and high-level stages

are completely independent. Since the structures of interest, which might be use-

ful for the high-level tasks, can be located in any arbitrary position in the im-

age. They can have any size and any level of contrast. So the low-level process

should be uncommitted to these conditions, and output a multi-scale and contrast-

invariant general description that is independent from any speci�c high-level task.

So, in the �eld of image segmentation, one popular strategy is to compute a hi-

erarchy of segmentation, from �ne ones to coarse ones [Guigues 2006], instead

of computing a single partition with respect to a certain scale. Some examples

are the quadtree [Finkel 1974], the minimum spanning tree [Kruskal 1956], the α-

tree [Ouzounis 2011a, Nagao 1979, Soille 2008, Meyer 2000], the binary partition

tree [Salembier 2000], the ultrametric watershed [Najman 2009], and the ultramet-

ric contour map [Arbelaez 2011]. The hierarchy of segmentation has also a tree

structure. This type of region-based representations has been shown to be useful

in many applications, such as image simpli�cation/segmentation [Soille 2008], im-

age compression [Samet 1985, Markas 1992], object detection [Vilaplana 2008], and

scene labeling by learning hierarchical features [Farabet 2013].

All those region-based representations, popularized by their use in connected

�ltering and in segmentation, have several properties in common. All of them can
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be embedded into a tree structure whose root represents the entire image as a single

region. The leaves correspond to small regions. These tree structures are multi-scale

image representations in the sense that a parent region is always larger than the

children regions. They obey the most fundamental principle of multi-scale analysis,

the causality principle [Koenderink 1984]. In fact, a region R at a certain scale is

included in all its ancestor nodes till the root node. This region R can be seen

as a kind of consequence for its ancestor nodes. Besides, some of these tree-based

structures are contrast-invariant image representations. All these features contribute

to the success of many applications using these tree-based image representations.

In most of the applications using tree-based image representations, the analysis

of the tree is performed individually, which is to say that the regions represented

by the tree nodes are considered as completely independent. The decision of �l-

tering a non-relevant region or selecting a region of interest is only based on the

attribute describing the underlying region. The structure of the tree, i.e. the inclu-

sion relationship between regions is often ignored, which is unfortunate since this

relationship contains important contextual information. That kind of information

is usually more appropriate than the one de�ned by a local window in the classical

case. Most of the tree analysis strategies fall usually into two categories: pruning-

based methods and thresholding-based methods. There are very few applications

relying on the tree-based image representations that make use of the tree structures,

such as the maximally stable extremal regions (MSER) [Matas 2002], the preferen-

tial image segmentation [Pan 2009b], and the texture image indexing [Xia 2010].

However, only some simple information about the tree structure is used. For in-

stance, the comparison of attributes describing a region with the ones describing its

parent region and the children region included in it for local minima detection in

the tree, or the number of children.

In this PhD thesis, we propose a more general method to deal with region-based

image representations. We �rst introduce the notion of tree-based shape space

given by the tree-based image representations. Most of the existing applications

relying on those representations can then be seen as a simple analysis (sometimes

individual analysis) of this shape space. A �rst consequence of this interpolation

through the notion of the shape space is a novel local feature detection method

based on topological selection of regions from the shape space, (it can be seen as

a variant of the widely used MSER). The core work presented in this thesis is a

framework that we call shape-based morphology, inspired from the connected �lters,

but applied to the tree-based shape space instead of the image space. It provides

a more general and robust way to analyze the tree than the existing strategies. It

is a versatile framework, which can be easily adapted to many image processing,
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pattern recognition, and computer vision problems.

1.3 Main contributions

The main contribution of this thesis is the proposition of a framework relying on

region-based image representations, which are used in an increasing number of ap-

plications. We call this framework shape-based morphology. It is inspired by the

connected operators [Salembier 1998, Salembier 2009]. We �rst introduce the notion

of tree-based shape space which can be de�ned by any tree-based image represen-

tation. It is a new point of view that considers any tree-base image representation

as a node-weighted graph, the weights being a certain attribute function describing

each region. The main idea of the framework of shape-based morphology is to apply

connected operators to this later graph. It is a versatile framework that can be used

for many image processing, pattern recognition, and computer vision problems. A

number of applications using the framework of shape-based morphology have been

proposed, which demonstrate the usefulness and show the high potential of this

framework. Finally, the algorithms used in this thesis are also presented to ensure

reproducible research.

1.3.1 A versatile framework

The notion of tree-based shape space constructed from any tree-based image repre-

sentation provides a simple point of view for many applications using tree represen-

tations. They can be seen as non-relevant points �ltering or a selection of points of

interest in the shape space. However, in most of these applications, this shape space

analysis is performed individually, or very simple information about the tree struc-

ture is used. Such information can be for instance the number of children for each

node, or the local minima detection based on the comparison between the attribute

of a node and the ones of its parent node and children nodes. The framework of

shape-based morphology makes use of the complete tree structure, that is mainly

the inclusion relationship between neighboring regions. This information can be

seen as the context of each node, which is moreover region form adapted, unlike the

local window. This �context� might provide a more adequate information that helps

deciding whether or not to �lter out a component. Consequently, this framework is

more general than the classical existing ones and might also be more robust. De-

pending on how we process this shape space, this framework can be used for three

di�erent purposes.

• Filtering: This framework includes the classical pruning- or threshold-based
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strategies. It also yields introduction of the two novel classes of connected

operators called the shape-based lower/upper levelings, and self-dual morpho-

logical shapings.

• Object detection/segmentation: Supposing that the main structures of

the objects of interest are present in the shape space (which is usually

a reasonable hypothesis), we can apply this framework for object detec-

tion/segmentation. To do this, we can spot the local minima or maxima of a

certain attribute function describing each region of the shape space. Connected

operators in the shape space help to remove the spurious minima or maxima,

so does the meaningless objects. Besides, a saliency map [Najman 1996] repre-

senting a soft object detection can be obtained by using the notion of extinction

values [Vachier 1995].

• Hierarchy transformation: Employing the principle of the soft object de-

tection, we can produce with our framework a saliency map representing a

hierarchical image segmentation from any tree-based image representation.

1.3.2 A number of applications

We have developed a number of applications using the framework of shape-based

morphology, which demonstrate the usefulness and show the high potential of the

framework.

• Tree-based Morse regions (TBMR): The TBMR in Chapter 4 is a di-

rect result from the fact that MSER [Matas 2002] can be seen as a relevant

selection of points from the shape space. The TBMR is a variant of MSER,

whose selection is based on topological information inspired from the Morse

theory [Milnor 1963]. Unlike MSER, the TBMR is truly invariant to contrast

changes. Experimental results show that it achieves a comparable repeatabil-

ity score, but extracts a signi�cantly higher number of features compared with

the state-of-the-art methods. The applications to image registration and 3D

reconstruction demonstrate its accuracy and robustness.

• Hierarchical image simpli�cation: The simpli�cation method presented

in Chapter 5 is an e�cient morphological shaping. It quickly minimizes the

piecewise-constant Mumford-Shah functional subordinated to the topographic

map. A hierarchical version is also obtained using by the aspect of hierarchy

transformation of the framework. Experimental results show the usefulness of

this fast simpli�cation method.
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• Retinal image analysis: We have applied the shape-based �ltering of our

framework to retinal image analysis, including blood vessel segmentation and

optic nerve head (ONH) segmentation. Quantitative benchmarks in Chapter 6

demonstrate that some simple �ltering achieves state-of-the-art results, when

compared with more evolved methods.

• Object detection/segmentation: We have presented in Chapter 7 a novel

e�cient ratio-cut estimator, which is context-based and which can be inter-

preted as an active contour. Some examples of the application of this estimator

to the topographic map show the usefulness and robustness of this proposed

estimator and the object detection/segmentation aspect of the framework.

• Extending constrained connectivity: We have applied in Chapter 8 the

hierarchy transformation aspect of the framework to the α-tree, (known also

as the hierarchy of constrained connectivity), with an non-increasing attribute

function inspired from the work of [Felzenszwalb 2004]. Quantitative bench-

marks on the BSDS500 dataset show that this saliency map-based hierarchy

might represent better contents of input images.

1.3.3 Reproducible algorithms

We present the e�cient algorithm to compute the morphological trees based on

the union-�nd algorithm, and the algorithm to incrementally compute attributes

(relying on accumulated information on region, contour, and context). We have

also developed a fast algorithm to compute minimal information along the contours

for some attribute such as the number of false alarms [Desolneux 2001, Cao 2005].

Finally, we have also introduced an e�cient algorithm for disjoint level lines selection

from the topographic map representation, which provides a simpli�ed tree that helps

to improve the visualization of the topographic map.

1.4 Manuscript contents

This thesis is divided into three main parts.

The �rst part presents the main concept of the work presented in this thesis.

It is composed of two chapters.

• Chapter 2: Reviewing tree-based connected operators. This chapter

is an introduction to the background of our work. We review the connected

operators, which constitues the main context of our PhD work. Many region-

based image representations that can be organized into a tree structure are
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detailed. We then give some application examples that rely on these trees

to demonstrate their usefulness. The novelty of this chapter is that we in-

troduce the notion of the tree-based shape space, which is the basis of our

proposed framework. Eventually, we provide a simple understanding about

some existing applications in the context of the shape-space.

• Chapter 3: Shape-based morphology framework. This key chapter

presents the core proposition of this thesis: the framework of shape-based

morphology. The basic idea of this framework is to apply connected opera-

tors over the tree-based shape space. It consists of two tree constructions:

one is constructed from the image, and the second one is constructed from

the �rst tree representation. Our framework provides a simple de�nition of

MSER [Matas 2002], we can easily obtain an extension of MSER. Besides,

this framework has three main consequences. 1) For �ltering purposes, the

classical existing connected operators are generalized, and two novel types

of �lters are introduced. They are shape-based lower/upper levelings and

self-dual morphological shapings. 2) This framework can be used for object

detection/segmentation by selecting relevant points from the shape space. 3)

This framework provides a method to transform any tree representation into

a hierarchy representing a hierarchical image simpli�cation/segmentation.

The second part of this thesis presents di�erent applications that we have

developed using the framework of shape-based morphology.

• Chapter 4: Tree-Based Morse Regions (TBMR). The �rst application

is based on a simple analysis of the tree-based shape space. We present a

variant of the maximally stable extremal regions (MSER) that we call tree-

based Morse regions (TBMR). The main idea is to select in a covariant way

the regions from the tree-based shape space de�ned by the Min-tree and

Max-tree representations. The selection is based on some topological infor-

mation inspired from the Morse theory. It is truly contrast-invariant and

quasi parameter-free, as compared to the MSER approach. Besides, TBMR

extraction features the same complexity as MSER. Experimentally, TBMR

achieves a repeatability on a par with state-of-the-art methods, but obtains a

signi�cantly higher number of features. The applications of TBMR to image

registration and 3D reconstruction demonstrate its accuracy and robustness.

• Chapter 5: Hierarchical image simpli�cation. In this chapter, we �rst

propose an e�cient self-dual morphological shaping, that very quickly leads
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to a locally optimal solution for the piecewise-constant Mumford-Shah func-

tional minimization being subordinated to the topographic map. It selects a

set of salient level lines, and yields a simpli�ed image from the remaining level

lines. This is achieved by constructing only one tree representation. Using

the same principle of this example of shaping, as well as the aspect of hierar-

chy transformation in the framework of shape-based morphology, we obtain a

saliency map representing a hierarchical image simpli�cation. Experimental

results demonstrate the e�ciency, usefulness, and robustness of our method,

when applied to image simpli�cation, color image pre-segmentation, and au-

tophagosome counting in cellular images.

• Chapter 6: Shape �ltering. We show several applications using the �lter-

ing aspect of the framework of shape-based morphology. These shape-based

�lters introduced in this framework are applied to retinal image analysis, in-

cluding blood vessel segmentation and optic nerve head (ONH) segmentation.

Quantitative evaluations demonstrate that some simple shape-based �lters,

as compared to more evolved processings, can achieve state-of-the-art results.

Besides, we also illustrate an example among many variant of morphological

shapings.

• Chapter 7: Object segmentation on the shape spaces. We present

an application of the object detection/segmentation aspect of our framework.

In this chapter, we �rst introduce a novel e�cient ratio-cut estimator, which

is context-based and which can be interpreted as an active contour. It is

used as the attribute function that describes each region in the shape space.

A �rst example is applied to the topographic map [Monasse 2000b]. The

estimator can be computed incrementally on this shape space. Experimental

results in synthetic and real images demonstrate the robustness and usefulness

of the proposed context-based energy estimator. They also show that the

shape-based morphology is a versatile framework which is well-suited for object

segmentation tasks.

• Chapter 8: Extending constrained connectivity. This chapter focuses

on the aspect of hierarchy transformation of our framework. As a �rst example,

we use the shape space given by the α-tree (known also as the hierarchy of

constrained connectivity). This application can be seen as an extension of

constrained connectivity [Soille 2008] by transforming the α-tree into another

hierarchy of segmentation represented by a saliency map. Experiments on the

BSDS500 dataset show that this later saliency map might represent better the

contents of input images. This demonstrates the usefulness of the hierarchy
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transformation aspect in the framework of shape-based morphology.

The third part presents those algorithms used in this thesis.

• Chapter 9: Algorithms to compute information on the tree. In

this chapter, we detail the algorithms we have used for reproducible re-

search. To implement them, we use our C++ image processing library

Olena [Levillain 2010]. We �rst show the algorithm for tree construction based

on the union-�nd algorithm. Then we show how to e�ciently compute the at-

tributes relying on accumulating information on region, contour, and context.

The computation of minimal information along the contours for some attribute

such as the number of false alarms [Desolneux 2001, Cao 2005] is then illus-

trated. Finally, we present also an algorithm of disjoint level lines selection

relying on the topographic map representation. It provides a simpli�ed tree

that helps to improve the visualization of the topographic map.

Chapter 10 concludes the thesis by summarizing the framework of shape-based

morphology, and the applications developed in this framework. We also present

some possible improvements and future research on these applications. Several im-

portant factors that ensure the performance of our framework are then discussed.

We give some suggestions for additional studies of the three aspects of the frame-

work. Finally, we consider some possible applications of this framework.



Part II

Concept





Chapter 2

Reviewing tree-based connected

operators

This chapter presents the background of the core concept in this thesis. We review

the connected operators in Section 2.2, which are the main context of our PhD

work. Many region-based image representations that can be organized into a tree

structure are then detailed in Section 2.3. One popular implementation of the

connected operators is based on those tree-based image representations; it is detailed

in Section 2.5. The novelty of this chapter is the introduction of the notion of

tree-based shape space in Section 2.4. This shape space is the basis of our proposed

framework, and it provides a simple understanding about many existing applications

(see Section 2.6) relying on the use of tree-based image representations.

2.1 Preliminaries

An image can be seen as an undirected graph represented by a pair G = (V,E),

where V is the �nite set of vertices and E is the set of edges. Each vertex v ∈ V
represents a pixel or a voxel of the image domain, and each edge e ∈ E ⊆ V × V
models the neighborhood relationship (classically, 4 or 8-connectivity for 2D images,

and 6 or 26-connectivity in 3D cases) between the two vertices composing e.

A graph (V,E) is said to be connected if, for any x, y ∈ V , there exists a path

from x to y, which is a sequence of n > 1 vertices (x0 = x, x1, . . . , xn = y) such that

every xi ∈ V , and every (xi, xi+1) ∈ E. Usually, the image domain is connected.

A binary image X is a subset of the image domain that induces a subgraph

(VX , EX), such that VX is the set of vertices representing the set of points of X,

and EX = VX × VX ∩ E. The binary set X is said to be connected if the subgraph

(VX , EX) is connected. A connected component C of X is a connected subset of

X with the maximal extent. This means for any C ′ such that C ⊆ C ′ ⊆ X, if C ′

is connected, then we have C ′ = C. More details about the notion of connectiv-

ity can be found in [Serra 1998, Braga-Neto 2003, Ouzounis 2007, Ouzounis 2011b,

Serra 2012a].
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(a) Original binary image (b) Output binary image

Figure 2.1: An example of binary connected operator.

In the following, X and Y denote the binary sets, the grayscale image f : V →
R or Z is a mapping F from V to R or Z, which assigns a gray level to each vertex.

It is a node weighted graph denoted as (G,F ), where F is an element of F . As a

convention, operators on binary images are denoted with capital Greek letter; the

corresponding lowercase letter is used to denote the grayscale version.

2.2 Connected operators

2.2.1 General de�nition

Let us start with the notion of connected operators [Serra 1993, Salembier 1995,

Salembier 1998, Salembier 2009] for sets and then extend it to the case of grayscale

images.

De�nition 1 An operator Ψ working on an arbitrary binary image X is said to be

connected when the set of di�erence X \Ψ(X) is exclusively composed of connected

components of X or of its complement Xc.

This means that the connected operators for sets acts only by preserving or removing

the connected components of foreground and of background. An example of the

binary connected operator is given in Figure 2.1, where the round foreground objects

are removed, the others are intact.

The extension of connected operators to grayscale images relies on the notion of

partition of �at zones [Salembier 1995]. A �at zone Fh(f) of a grayscale image f is

a connected component of the level set

Fh(f) = {x ∈ V | f(x) = h} (2.1)

Note that there may be multiple disjoint �at zones for each gray level h.
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A partition of an image is a set of disjoint, non-void connected components {Ci}
such that

1 ∀ i, Ci 6= ∅,

2 ∀ i 6= j, Ci ∩ Cj = ∅,

3 ∪Ci = V .

It is obvious that the set of all the �at zones of a gray level image f forms a

partition of the image domain. Now let us denote P as the partition and P(x) as

the region of P that contains x. A partition P1 is said to be �ner than (written

as P1 v P2) a partition P2, if ∀x,P1(x) ⊆ P2(x). That means if P1 is �ner than

P2, then any pair of points belonging to the same region of P1 belongs to a unique

region of P2.

De�nition 2 An operator ψ working on any grayscale image f is connected if the

partition of �at zones of ψ(f) is always coarser than the partition of �at zones of

the input image f .

The de�nition 2 shows that the grayscale connected operators acts by merging �at

zones. Consequently, the regions of the output partition of �at zones are created by

union of regions of the input partition. They do not introduce any new contour, and

keep perfectly the location and shape of the contours, which make the connected

operators well known for the good contour preservation properties. An example

of connected operator compared to the linear �lter and the classical morphological

operator based on structural element is shown in Figure 2.2

The connected operators are usually considered as �ltering tools in the sense

that they transform an input grayscale image into a �ltered grayscale image. And

as the conception of grayscale connected operators relies on the notion of parti-

tion, They are also claimed to bridge the gap of classical �ltering and segmenta-

tion [Jones 1999, Gatica-Perez 2001]. Indeed, some theoretical notions about the

extension of connected operators to pure segmentation applications are presented

in [Serra 2006, Ronse 2008], known as connective segmentation. Some application

examples of the connected operators to segmentation will also be shown in Chapter 7

and Chapter 8.

One of the most successful implementation of such connected operators is based

on a reconstruction process. The readers are referred to [Salembier 2009] for more

details. A special case called leveling will be reviewed in Section 2.2.3. Another

popular implementation relies on the tree-based image representations (detailed in

Section 2.3). See Section 2.5 for details about this e�cient implementation.
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(a) Input image (b) Gaussian �lter

(c) Opening with disk (d) Connected operator

Figure 2.2: A connected operator example compared with a linear �lter, and a

classical morphological opening with structuring element. The Gaussian �lter in

(b) blurs image, and the opening using a disk as structuring element in (c) creates

new contours. The grain �lter [Caselles 2002] does not create any new contour,

neither shifts the existing contours.
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2.2.2 Attribute �lters

The attribute �lters [Breen 1996, Salembier 1998, Heijmans 1999] interact with con-

nected components instead of individual points in the case of classical morphologi-

cal operators originally developed by Matheron and Serra [Serra 1982, Serra 1988].

They are connected operators that act by preserving or by removing the con-

nected components based on some attribute criterion. A subset of these �lters,

called shape �lters [Urbach 2007], has been used for extraction of vessels in 3D

angiograms [Wilkinson 2001].

Before detailing the attribute �lters, let us review several properties usually

discussed for morphological operators Ψ working on binary images.

• An operator Ψ is increasing if X ⊆ Y ⇒ Ψ(X) ⊆ Ψ(Y );

• An operator Ψ is extensive if X ⊆ Ψ(X);

• An operator Ψ is anti-extensive if Ψ(X) ⊆ X;

• An operator Ψ is idempotent if Ψ(Ψ(X)) = Ψ(X);

• An operator Ψ is Self-dual if Ψ(X) = Ψ(Xc)c.

For the morphological operators ψ working on grayscale images, the correspond-

ing properties is de�ned by replacing ⊆ with ≤, and by replacing the complement

operator c by −. A grayscale connected operator ψ is said to be self-dual if it pro-

cess symmetrically the dark and bright image components, ∀f, ψ(f) = −ψ(−f).

A morphological �lter is an increasing and idempotent operator [Heijmans 1999].

However, sometimes this condition is relaxed to mean any idempotent operator, as

in the case of shape �lters [Urbach 2007].

Let T be an attribute criterion : P(V )→ {true, false}, where P(V ) is the set of

all subsets of V . Typically, T is an assessment of a connected component C based

on the comparison of its attribute (some interesting feature) A: P(V ) → R to a

given threshold λ

T (C) = (A(C) ≥ λ). (2.2)

Then the trivial attribute �lter ΓT on a connected component C returns the con-

nected component C itself if T (C) is true, and ∅ otherwise, with also ΓT (∅) = ∅.
And the binary connected opening Γx of X at point x ∈ V gives the connected

component of X containing x if x ∈ X, and ∅ otherwise.

De�nition 3 The anti-extensive binary attribute �lter ΓT working on a binary im-

age X is given by

ΓT (X) =
⋃
x∈X

ΓT (Γx(X)). (2.3)
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If A is increasing, which means X ⊆ Y ⇒ A(X) ≤ A(Y ), ΓT is then an

attribute opening, otherwise, ΓT is an attribute thinning [Breen 1996]. A binary

attribute thinning example is shown in Figure 2.1, the attribute is the roundness

which is a non-increasing attribute.

The extension of the attribute �lters to grayscale images is based on image

thresholding decomposition. For a given grayscale image f , thresholding f in a

decreasing order from hmax to hmin yields a stack of nesting upper level sets. Each

upper level set at level h is a binary image given by

Xh(f) = {x ∈ V | f(x) ≥ h}. (2.4)

Each binary image Xh(f) contains a set of connected components known also as

peak components P ih [Salembier 1998]. A peak component P xh with level h ≤ f(x)

containing x is de�ned as below

P xh (f) = Γx(Xh(f)). (2.5)

Note that for any two peak components P ih1 and P jh2 at respectively level h1 ≤ h2,

either P ih1∩P
j
h2

= ∅, or P jh2 ⊆ P
i
h1
. This inclusion relationship yields a tree structure

with the name of Max-tree [Salembier 1998]. See also Section 2.3 for more details.

The attribute �lters for grayscale images consist of preserving or removing the

peak components. For the increasing attribute A↑, if P xh is preserved, for any h′ ≤ h,
P xh′ is also preserved.

De�nition 4 The grayscale anti-extensive attribute �lter γT for a given image f at

some point x is de�ned by

(γT (f))(x) = ∨{h |x ∈ ΓT (Xh(f))}. (2.6)

For the non-increasing attribute A, di�erent �ltering rules (see Section 2.5.2 for

more details) are de�ned.

The extensive attribute �lters for binary images and grayscale images can be

easily de�ned by the duality relationship with the anti-extensive versions de�ned

above. An example of self-dual grayscale attribute �lter is given in Figure 2.2(d),

the attribute is the area. This �lter is also known as the grain �lter and is detailed

in Section 2.6.1.1.
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2.2.3 Leveling: an example of connected operator

The levelings is a subclass of connected operators, it was �rst introduced

in [Meyer 1998] by imposing some constraints in the de�nition of connected op-

erators. The levelings enlarges the �at zones by suppressing many details while

keep perfectly the sharpness of the transitions zones preserved. Usually, the lev-

elings are considered as the intersection of two subclasses the lower levelings and

upper levelings.

De�nition 5 An operator ψ is an lower leveling working on a grayscale image f

if and only if for any pair of neighboring points (x, y) : ψ(f)(x) > ψ(f)(y) ⇒
ψ(f)(y) ≥ f(y).

De�nition 6 An operator ψ is an upper leveling working on a grayscale image f

if and only if for any pair of neighboring points (x, y) : ψ(f)(x) > ψ(f)(y) ⇒
ψ(f)(x) ≤ f(x).

Let us remark that the lower leveling (resp. upper leveling) removes the details

of the regional minima (resp. maxima), so it enlarges the dark (resp. bright) �at

zones.

De�nition 7 An operator ψ working on a grayscale image f is a leveling if and

only if for any pair of neighboring points (x, y) : ψ(f)(x) > ψ(f)(y) ⇒ f(x) ≥
ψ(f)(x) and ψ(f)(y) ≥ f(y).

The de�nition 7 states that if there is a transition in the output image after

leveling, the transition exists in the initial image. Because ψ(f)(x) > ψ(f)(y) ⇒
f(x) ≥ ψ(f)(x) > ψ(f)(y) ≥ f(y). Furthermore, the interval of the transition in

the output image [ψ(f)(y), ψ(f)(x)] is contained in the interval of the transition in

the input image [f(y), f(x)].

An example of the leveling with the use of markers is illustrated in Figure 2.3.

The leveling function g is obtained by increasing (resp. decreasing) the marker

function h as little as possible until a �at zone is created or the function g hits the

function f on {h < f} (resp. on {h > f}).
The readers are referred to [Meyer 1998, Meyer 2004] for more details about the

properties of levelings. In particular, it has been shown that the opening and closing

by reconstruction [Vincent 1993] are levelings.

2.3 Tree-based image representations

This section brie�y review two types of image representations that can both be orga-

nized into a tree structure. The �rst one is based on image threshold decompositions,
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f
g

h

Figure 2.3: An illustration of leveling. f = reference function; h = marker function;

g = associated leveling.

including the Min/Max-tree [Salembier 1998] and topographic maps [Caselles 1999],

known also as the tree of shapes [Monasse 2000b]. The second type of tree-based

image representation is the hierarchy which is composed of a set of segmentations

from �ne to coarse, including the Binary Partition Tree (BPT) [Salembier 2000], α-

tree [Ouzounis 2011a] based on the notion of constrained connectivity [Soille 2008],

the quadtree [Finkel 1974, Pietikainen 1981, Rosenfeld 1983, Samet 1984] (but not

used in any application presented in this thesis), and the minimum spanning

tree [Kruskal 1956, Morris 1986]. All these trees belong to the more general family of

hierarchical image segmentations. It has been shown in [Najman 2011] that any hier-

archical image segmentation is equivalent to a ultrametric watershed [Najman 2009],

known also as the saliency map [Najman 1996].

2.3.1 Min/Max-tree

One of the simplest tree-based image representations is the Max-tree

[Salembier 1998]. It is based on the inclusion relationship between peak compo-

nents de�ned by the upper level sets in Eq. (2.4). Each tree node Nk with level h

represents a peak component P ih such that P ih ∩Lh 6= ∅. Note that in practice, only

the vertices of P ih having level h denoted as Cih = {x ∈ P ih | f(x) = h} are stored

in the node Nk. So the peak component P ih is actually given by the set of vertices

stored in all the nodes of the subtree rooted at Nk. The links between nodes known

as parenthood re�ects the inclusion relationship. The highest node of the tree is the

root, which is the whole image domain. And the leaves of the Max-tree correspond

to the regional maxima of the image. A simple example of is shown in Figure 4.2,
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Figure 2.4: Tree-based image representations. The root is at the top represented by

double circle. The numbers in the original image denote the pixel values.

where the leaves C and F are two regional maxima.

By duality, the dual structure of the Max-tree named Min-tree is based on the

lower level sets decomposition de�ned as below

X h(f) = {x ∈ V | f(x) ≤ h}. (2.7)

The inclusion relationship between connected components of the lower level sets

yields the structure of Min-tree. The leaves of the Min-tree are the regional minima

of the image (See Figure 4.2). Note also that both the data of the family of upper

level sets in Eq. (2.4) and lower level sets in Eq. (2.7) permit us to reconstruct the

image [Caselles 1999, Monasse 2000b, Caselles 2009].

f(x) = sup{h ∈ R |x ∈ Xh} = inf{h ∈ R |x ∈ X h}. (2.8)

Note that the Max-tree (resp. Min-tree) is very appropriate for implementation

of anti-extensive (resp. extensive) connected operators, since the pruning of the

Max-tree (resp. Min-tree) enlarges the �at zones of regional maxima (resp. minima).

Various algorithms have been proposed to compute e�ciently the Max-tree and

Min-tree. They can be classi�ed into two categories. The �rst one is based on

the �ooding procedure [Salembier 1998, Nistér 2008] which generally starts at the

root, and performs a depth-�rst or breadth-�rst �ooding process to build the �nal

tree. And the second one [Najman 2006, Berger 2007] is a union-�nd [Tarjan 1975]
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based approach. It consists usually of two passes. A �rst pass sorts the pixels,

and the second pass, in reverse order, build the tree while performing the union-�nd

process. This type of algorithm has a quasi-linear time complexity when pixel values

have a low quantization. A detailed comparison of these algorithms can be found

in [Carlinet 2013].

2.3.2 Topographic map

The Max-tree and Min-tree permit us to e�ciently handle the bright and dark

objects, but in a asymmetrical way. Several authors then proposed to consider the

level lines (topological boundaries of the connected components given by the upper

or lower level sets) instead of upper or lower level sets. This leads to a unique

tree representation describing the image. In the literature, this is tree is called

topographic map [Caselles 1999], inclusion tree or tree of shapes [Monasse 2000b],

monotonic tree or [Song 2003] or level line tree [Song 2007].

More speci�cally, according to the proposition of Monasse and

Guichard [Monasse 2000b], this tree is obtained by merging the Max-tree

and Min-tree through the concept of shapes, a shape is de�ned as the connected

components of upper or lower level sets with the holes �lled. It has been shown that

these shapes can be structured into a tree representation. Note that the concept of

shape here is a special case of the notion of shape for the tree-based shape spaces

which will be de�ned in Section 2.4. In what follows, we use the term of topographic

map for this tree-based image representation.

The topographic map along with the Max/Min-tree feature several interesting

properties. First of all, they are invariant to local contrast changes. And they inher-

ently embed a morphological scale-space (the parent of a node is a larger connected

component). Moreover, the topographic map is a non-redundant and complete

image representation. Another important property of the topographic map is its

self-duality, which make the bright object on dark background represented in the

same manner as the dark object on bright background. This implies that the bright

objects and dark objects are treated in the same way. The leaves of the topographic

map can be either regional maxima or minima. However, note that not all the re-

gional maxima and minima are represented by the leaves of the topographic map.

An example is illustrated in Figure 2.4. The regional minima A and regional maxima

C correspond to the leaves, whereas the regional maxima F is not a leaf.

The �rst e�cient algorithm to compute the topographic map is the fast level

lines transform (FLLT) proposed by Monasse and Guichard in [Monasse 2000b]. It

takes a region-growing approach to build the Max-tree and the Min-tree, then �nds

for each hole in a connected component the connected component in the other tree
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corresponding to it, and puts that connected component as descendant of the one

containing this hole. An improved version, fast level set transform (FLLT) is then

introduced in [Monasse 2000a]. Both FLLT and FLST have an average complex-

ity of O(N log N), where N is number of pixels in image. In [Song 2007], Song

proposed a top-down approach to compute the topographic map. It begins with

the image boundary, and for each level line under scrutiny, �nd all its child level

lines. The algorithm computes level lines directly instead of level set components.

It takes a complexity of O(N + t), where t is the total length of all level lines.

Recently, Géraud et al. proposed a quasi-linear algorithm to compute the topo-

graphic map for nD images [Géraud 2013]. It shares the same process as algorithms

in [Najman 2006, Berger 2007] based on union-�nd process. This algorithm will be

detailed in Section 9.1. Besides, an algorithm of disjoint level lines selection facili-

tating the visualization of the corresponding topographic map will also be presented

in Section 9.5.

2.3.3 Binary Partition Tree (BPT)

The Max/Min-tree and the topographic map are extremum oriented image repre-

sentations. They describe the image as a set of connected components starting from

the extrema. These connected components are either disjoint or included in an-

other. Nevertheless, the real objects in the scene may not coincide with nodes of

those trees. On the contrary, the Binary Partition Tree (BPT), �rst introduced by

Salembier [Salembier 2000] re�ects the similarity between neighboring regions. It

represents a set of regions obtained from an initial partition. The leaves of BPT

represent the regions of that initial partition, and the remaining tree nodes represent

regions that are obtained by merging regions represented by children. The root of

the tree represents the entire image domain. The BPT consists of a set of regions of

di�erent scales. This is why it can be viewed as a hierarchical region-based image

representation. Large regions are represented by nodes close to the root whereas

small details can be found at lower levels. This representation is considered as a

compromise between representation accuracy and the processing e�ciency. In fact,

the BPT does not include all possible merging of regions of the initial partition seen

as a region adjacency graph (RAG) , only the most �likely� or �useful� mergings

are represented in the BPT. The connectivity encoded in the BPT is binary in the

sense that each region is explicitly connected to its sibling which forms their parent.

Consequently, the BPT only encodes part of the neighborhood relationship of the

initial RAG. However, this representation allows the fast implementation of some

sophisticated processing techniques.

More speci�cally, this tree should be build in such a way that the most �interest-
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ing� regions are represented. This might be application dependent, but a possible

way which is suitable for a large number of applications is to create the tree by

tracking the merging steps performed by a region merging based segmentation algo-

rithm (See for example [Morris 1986, Garrido 1998]). Starting from a given initial

partition (that can be the partition of �at zones or even each pixel is a region),

the merging algorithm proceeds iteratively by 1) computing the similarity measure

between all pair of neighboring regions, 2) selecting the most similar neighboring

regions and merging them into a new region, 3) updating the neighborhood and the

similarity measures. The algorithms iterate the steps 2) and 3) until a single region

covering the entire image domain has been formed. Two important aspects of the

merging steps are the merging order and the region model. The readers are referred

to [Salembier 2000, Vilaplana 2008, Salembier 2009] for more details. An example

of such a tree-based representation is given in the Figure 2.4.

2.3.4 α-tree

The α-tree [Ouzounis 2011a], known also as hierarchy of single linkage

components [Nagao 1979], constrained connectivity [Soille 2008] or quasi-�at

zones [Meyer 2000] is based on the notion of α-connectivity [Soille 2008]. For a

pair of neighboring points x and y, let d(x, y) be the dissimilarity measure be-

tween them, then two points p and q are said to be α-connected if there is a path

{p  q} which is a chain of pairwise adjacent points commonly given in the form of

{p  q} ≡ 〈p = p1, . . . , pn = q〉, such that for any pair of adjacent points (pi, pi+1),

d(pi, pi+1) ≤ α always holds. Based on the notion of α-connectivity, a α-connected

component [Soille 2008] (known also as single linkage component [Nagao 1979] or

quasi-�at zone [Meyer 2000]) α-CC(p) containing a point p is de�ned as

α-CC(p) = {p} ∪ {q | p and q are α-connected}. (2.9)

Assuming that the dissimilarity measure between a pair of neighboring points x

and y is the intensity di�erence d(x, y) = |f(x) − f(y)|, and setting α = 0, the 0-

connected component is actually the �at zone. Note that for two neighboring points

p and q, d(p, q) > α does not imply that p and q do not belong to the same α-

connected component but only that there is no direct linkage between them. Some

examples of α-connected components are shown in Figure 2.5. Such de�ned α-

connected components based on the local dissimilarity measure are known to su�er

from leakage e�ects. One possible solution proposed in the literature to this problem,

is the introduction of global constraints, for example, the range ω [Soille 2008], i.e.,

the maximal dissimilarity between all the pairs of points within a given α-connected
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(e) Partition of �at zones
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(e) Associated α-tree

Figure 2.5: A 4×4 image and its partitions into α-connected components for α

range from 0 to 3. (a) 0-CCs, (b) 1-CCs, (c) 2-CCs, (d) 3-CCs. Note the �ne

to coarse partition hierarchies. (e) The associated α-tree that encodes the �ne to

coarse partition hierarchies. The red dashed circles represent redundant nodes of

the tree-based image representation.

component, which leads to the following de�nition of (α, ω)-CC(p):

(α, ω)-CC(p) =
∨
{αi-CC(p) | αi ≤ α,R

(
αi-CC(p)

)
≤ ω}, (2.10)

Where R
(
α-CC(p)

)
denotes the maximal dissimilarity within α-CC(p).

Note also that there exists an inclusion relationship between the α-connected

components:

∀x ∈ V, if α1 ≤ α2 ⇒ α1-CC(x) ⊆ α2-CC(x) ⇒ Pα1 v Pα2 . (2.11)

Where Pα is the partition of α-connected components. This inclusion relation-

ship yields the structure of α-tree [Ouzounis 2011a], a hierarchical image repre-

sentation of multi-scale partition. A simple example of α-tree is given in Fig-

ure 2.5. The interested readers are referred to [Soille 2008, Ouzounis 2011a] for

more details about the α-tree. Some algorithms to compute this tree are available

in [Najman 2011, Ouzounis 2011a, Najman 2013, Ouzounis 2012b].
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2.3.5 Quadtree

The quadtree �rst proposed in the early 1970's [Finkel 1974] is a data structure

in which each node has exactly four children or no children at all (a leaf node).

For image processing applications, the quadtree [Rosenfeld 1983] is often used

to decompose the image by recursively subdividing it into homogeneous quad-

rants or regions. The regions may be square or rectangular, or may have any

arbitrary shapes. The quadtree has been demonstrated to be useful in applica-

tions such as image compression [Samet 1985, Markas 1992] or image segmenta-

tion [Pietikainen 1981, Spann 1985, Smith 1994, Pavlidis 1977].

More concretely, suppose that we have a given homogeneous criterion C, (e.g., the
region range is under a given threshold value t). Then based on this homogeneous

criterion, we can recursively subdivide a given image into homogeneous pieces. Let

us also assume that each subdivision is into subquadrants. If the whole image to

begin with is homogeneous under the criterion C, we are done. Otherwise, split it

into quadrants. And then examine the homogeneity for each of them, if a given

quadrant is homogeneous, we are done for it, if not, split it into quadrants, and so

on until all the quadrants are homogeneous under C.
The result of the subdivision process can be represented by a tree structure. The

root node of the tree represents the whole image, each internal node has exactly four

children and represents a non homogeneous region to be subdivided into quadrants

represented by the four children, and each leaf node represents a homogeneous block.

An example of the quadtree is shown in Figure 2.6.

Note, however, the homogeneous blocks represented by the leaves are not neces-

sary maximal homogeneous regions, as it is possible that the union of some adjacent

blocks is still homogeneous. Consequently, for the image segmentation purpose, we

must allow merging of some adjacent blocks as long as the union remains homoge-

neous. However, this �split-and-merge� process does not result a quadtree structure

any more.

2.3.6 Minimum Spanning Tree (MST)

Given a image f which can also be seen as a nodes weighted graph (V,E), a spanning

tree of that graph is a subgraph that is a tree connects all the vertices (i.e., points)

together. An image can have many spanning trees. An image can also be represented

by an edge weighted graph, where each edge e ∈ E is weighted by the dissimilarity

measure between the two points linked by this edge e. Then use this to weight the

spanning tree by computing the sum of the weights of the edges in that spanning

tree. A minimum spanning tree (MST) [Kruskal 1956] is then a spanning tree having
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(c) Associated quadtree

Figure 2.6: An example of quadtree. The homogeneous criterion C is that the global
range ω ≤ 3.
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a weight less than or equal to the weight of any other spanning tree. Note that the

minimum spanning tree may not be unique.

The minimum spanning tree is a typical and well-known problem of combina-

torial optimization. It has been applied for many years to image analysis prob-

lems [Suk 1984, Morris 1986, Ma 2000, Felzenszwalb 2004, Cousty 2009]. Kruskal's

algorithm [Kruskal 1956] is a well-known greedy algorithm that computes a MST

for a connected edge weighted graph. It can be described as follows:

• Create a forest (a set of trees), where each vertex is a separate tree,

• Create a set SE that contains all the edges in the graph, and sort this set SE
in weight increasing order,

• For each edge e ∈ SE in increasing order,

� if e links two di�erent trees, then add this edge e to the forest, and

merging the two trees into a single one.

� otherwise, do nothing.

At the termination of the algorithm, the forest has only one component and is a

minimum spanning tree of the graph.

A Min-tree of the MST represents a set of partitions from �ne to coarse, that

can be organized into a tree structure. The root node represents the entire image

as a single region. The regions correspond to the leaf nodes are the �at zones.

The in-between nodes are obtained by incremental merging of regions. A simple

example of the MST is depicted in Figure 2.7. An e�cient algorithm based on

Kruskal algorithm was presented in [Najman 2013], where the authors propose a

quasi-linear algorithm that computes a so called binary partition tree by altitude

ordering. A linear post-processing of this tree can give a Min-tree of the MST,

which is proved in [Cousty 2013] to be equivalent to the α-tree.

2.3.7 Hierarchical image segmentations

The Binary Partition Tree (BPT) in Section 2.3.3, the α-tree in Section 2.3.4, the

quadtree in Section 2.3.5, and the Minimum Spanning tree 2.3.6 exhibits several

features in common. They are all multi-resolution/scale image representations that

consist of a set of partitions from �ne to coarse. The root represent the entire image

as a single region, while the leaves correspond to the regions of the �nest image

partition (e.g., partition of �at zones). In fact, they belong to a more general family,

the hierarchical image segmentations, known also as the pyramids [Pavlidis 1979,
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(b) Partition of �at zones

A B I J C D E F K G H

A∪B C∪D E∪F G∪HI J K

A∪B∪I J C∪D∪E∪F K G∪H

A∪B∪C∪D∪E∪F∪G∪H∪I∪J∪K

(c) Min-tree of the MST

Figure 2.7: An example of the Minimum Spanning Tree (MST). The edges in the

MST of image (a) are highlighted in green. The Min-tree of the MST represents a

set of partition from �ne to coarse, which is equivalent to the α-tree.
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Rosenfeld 1984, Jolion 1994]. A hierarchy of image segmentation H is a chain of

nesting image partitions Pi, i.e.,

H = {Pi | 0 ≤ i ≤ n, ∀j, k, 0 ≤ j ≤ k ≤ n⇒ Pj v Pk}, (2.12)

where Pn is the partition {V } of V into a single region, and P0 represents the

�nest partition of the image G = (V,E). In another word, a hierarchy H is a set of

regions {R}, such that

(i) {V } ∈ H,

(ii) for each region R ∈ P0, R ∈ H,

(iii) for each pair of distinct regions (R,R′), where R ∈ H,R′ ∈ H, R ∪R′ 6= ∅ ⇒
R ⊂ R′ or R′ ⊂ R.

The (iii) means that two distinct regions in the hierarchy of segmentation are either

disjoint or nested.

An indexed hierarchy on the image domain V is a pair (H,λ), where H denotes

a given hierarchy on V and λ is a positive function (e.g., the scale), de�ned on H

such that for two nesting regions R,R′ ∈ H,R ⊂ R′, we have λ(R) < λ(R′).

A hierarchy of image segmentation is usually represented using a special type

of tree called dendrogram. The root node represents the entire image {V }, and
the leaves are the regions of the �nest partition P0, while an intermediary node N
represents the merging of regions represented by the nodes just below nodeN , known

as the children of node N . An example of such a hierarchical image segmentation

represented by a dendrogram is shown in Figure 2.8 and Figure 2.9.

The most fundamental principle of hierarchical image segmentations being multi-

scale representations is the causality principle [Koenderink 1984]. From this princi-

ple, for any couple of scales λ2 > λ1, the �structures� found at scale λ2 should �nd a

�cause� at scale λ1. Following the original idea of Babaud [Babaud 1986], used also

by Morel and Solimini [Morel 1995] and in the work of Guigues et al. [Guigues 2006],

the causality principle is applied to the edges associated to the set of partitions rep-

resented by a hierarchy of segmentation H. In this case, the relationship ��ner

than� between the set of partitions spanned by a hierarchy H behaves as a scale

parameter if and only if for all λ2 > λ1, which implies Pλ1 @ Pλ2 , the boundaries
of partition Pλ2 are in a one-to-one mapping with a subset of the boundaries of Pλ1
(their �cause�).

Instead of performing a single partition of the input image, such a hierarchical

image segmentation H describes the image contents using multiple representations

with decreasing resolution, so increasing scale. A best or optimal partition is then
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(b) A dendrogram of hierarchical segmentation

Figure 2.8: A synthetic image (a), and its associated dendrogram (b) representing

a hierarchy of image segmentation. Note that there are possible partitions that

are not spanned by the dendrogram. The red dashed curve in (b) is a cut of the

dendrogram (i.e., hierarchy), the partition given by this cut is illustrated with red

boundaries in the original image (a).

selected from the set of partitions spanned by that hierarchy H based on some

sophisticated criterion [Guigues 2006, Serra 2012b, Serra 2013, Cardelino 2013,

Kiran 2013a, Kiran 2013b, Kiran 2014] through the notion of cuts [Guigues 2006].

A cut of a hierarchy H is a subset of H which intersects any path from the base to

the top of H exactly once. Equivalently, a cut is a partition P of V whose regions

are taken from the regions represented by nodes in H. The red dashed curve in

Figure 2.8(b) represents a cut of the hierarchy, and its associated partition is given

by the red boundaries in the original image in Figure 2.8(a). The Figure 2.9(c).

represents a partition corresponding to a cut obtained from the hierarchy in Fig-

ure 2.9(b).

There exist many methods for computing a hierarchical image segmentation,

which can be divided in two classes: bottom-up (e.g., BPT, alpha-tree, MST), top-

down or split-and-merge (e.g., quadtree). Some recent reviews of those approaches

can be found in [Mar�l 2006, Soille 2008].

2.3.8 Saliency maps or ultrametric watersheds

A useful representation of hierarchical image segmentations reviewed in Section 2.3.7

was originally introduced in the PhD work of Najman [Najman 1994] under the name

of saliency map [Najman 1996]. A saliency map is obtained by stacking a family

of hierarchical contours. This representation is then rediscovered independently

by Guigues et al. through the notion of scale-set theory for visualization purposes
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[Guigues 2006], and it is then popularized by Arbeláez under the name of ultrametric

contour map for boundary extraction and comparing hierarchies [Arbeláez 2006a,

Arbelaez 2011].

Roughly speaking, for a given indexed hierarchy (H,λ), the corresponding

saliency map can be obtained by valuating each point of the image domain v ∈ V
with the highest value λ such that it appears in the boundaries of some partition

represented by the hierarchy H. Given a hierarchical image segmentation, it is

easy to assign importance to contours, which de�nes a duality between closed, non-

self intersecting weighted contours and that hierarchy. The low level (resp. upper

level) of a hierarchy respects to weak (resp. strong) contours, and is thus an over-

segmentation (resp. under-segmentation), which can be obtained by thresholding

the saliency map with low (resp. high) value.

Recently, it is stated by Najman that any hierarchical image segmentation (i.e.,

saliency map) is equivalent to a ultrametric watershed [Najman 2009, Najman 2011]

in the framework of edge-weighted graphs (G,Fe), where Fe is a positive func-

tion weighting the edge u = {x, y} between neighboring points x and y by

a dissimilarity measure (e.g., Fe(u) denotes the absolute di�erence between in-

tensity of point x and y). An ultrametric watershed is a topological water-

shed [Couprie 1997, Couprie 2005, Bertrand 2005] null on the minima applied on

edge-weighted graph [Najman 2009]. The topological watershed was originally in-

troduced by Couprie and Bertrand [Couprie 1997] on nodes weighted graph (G,Fn),

and having a fundamental property, that preservers the contrast between the re-

gional minima of F , where the contrast between two regional minima m1 and m2 is

de�ned as the minimal altitude to which one must climb in order to go from m1 to

m2, known also as the connection value CV . For two points x ∈ V and y ∈ V , it is
the number

CV (x, y) = min{h |x ∈ X h(V ), y ∈ X h(V )}. (2.13)

In other words, the connection value between two point x and y is the altitude of

the lowest lower level set that contains both x and y (rule of the least common

ancestor). The connection value is very similar with the notion of ultrametric dis-

tance. Recall that a distance is a proper dissimilarity that obeys the triangular

inequality: d(x1, x2) ≤ d(x1, x3)+d(x2, x3), where x1, x2, and x3 are three points in

the space. An ultrametric distance obeys the ultrametric inequality [Krasner 1944]:

ud(x1, x2) ≤ max
(
ud(x1, x3), ud(x2, x3)

)
. It is stronger than the triangular inequal-

ity.

There exists general connection between indexed hierarchies and ultrametric

distances which goes back to Benzécri [Benzécri 1973] and Johnson [Johnson 1967].

They proved that there is a bijection between them. In fact, the ultrametric distance
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associated to a indexed hierarchy (H,λ) on V is the following:

ud(R1, R2) = min{λ(R′) |R′ ∈ H,R1 ⊆ R′, R2 ⊆ R′}. (2.14)

In other words, the ultrametric distance ud(R1, R2) between two regions in V

that are also presented in the Hierarchy H is given by the smallest region in H which

contains both R1 and R2. Conversely, each ultrametric distance ud is associated to

one and only one nodes in a indexed hierarchy. Taking this associated ultrametric

distance as the positive function de�ned on H, the ultrametric watershed is easy to

compute. There exists e�cient and proven algorithms to compute the ultrametric

watersheds (i.e., saliency maps).

The Figure 2.9(d) depicts an ultrametric watershed corresponding to the hierar-

chical image segmentation represented in image in Figure 2.9(b). One segmentation

in Figure 2.9(c) is obtained by thresholding the ultrametric watershed with certain

value. With the equivalence between hierarchical image segmentation, saliency map,

ultrametric watershed, the reading order for interpretation in Figure 2.9 can be (a),

(d), (c), (b) instead of the classical reading order (a), (b), (c), (d). Each threshold-

ing of the ultrametric watershed (i.e., saliency map) yields a image segmentation of

a certain resolution level.

2.4 Tree-based shape spaces

All the image representations reviewed in Section 2.3 can be divided into two classes:

the thresholding decompositions based on trees Tt (e.g., Min/Max-tree, topographic

map), and the hierarchy of image segmentation based on trees Th (e.g., BPT, α-tree,
quadtree, MST). A major di�erence between Tt and Th is that any cut (except the

root) of Tt yields a subset of the image domain, whereas any cut of a hierarchy of

segmentation Tt gives a partition of the image domain. An example of several levels

of the tree Tt and Th are depicted respectively in Figure 2.10(a) and in Figure 2.10(b).

All these image representations are composed of a set of regions (i.e., connected

components) from small to large. These regions can be organized into a tree struc-

ture. Each region is represented by a node N in that tree. The root node of the

tree represents the entire image domain, and for any two distinct regions R1 and R2

represented by two nodes N1 and N2 in the tree, we have a nesting property:

R1 ∩R2 6= ∅ ⇒ R1 ⊂ R2 or R2 ⊂ R1. (2.15)

Except the root node, each node N in the tree has a unique parent node Np,
and there exists an edge (N ,Np) linking them re�ecting the parenthood relation-
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(a) (b)

(c) (d)

Figure 2.9: An example of a hierarchical segmentation produced by the method of

Guigues et al. [Guigues 2006]. (a) Original image; (b) Dendrogram of the hierarchi-

cal segmentation; (c) One segmentation (i.e., a cut) extracted from the hierarchy;

(d) An ultrametric watershed corresponding to the hierarchical segmentation. The

classical order for reading the images is (a), (b), (c), (d). But based on the notion

of saliency map, the reading order can also be (a), (d), (c), (b) [Najman 2011].
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(a) Several levels of a thresholding decomposition based tree (e.g., Min-tree).

(b) Several levels of a hierarchy of image segmentation (e.g., binary partition tree).

Figure 2.10: An example of the two classes of trees for the image shown in Figure 2.4.

ship, i.e., the inclusion relationship between the two regions they represent. Con-

sequently, the tree-based image representations can be seen as connected graphs

GT = (TN , Te), where TN = {N |N ∈ T } denotes the set of nodes in the tree

T , and Te = {(N ,Np) | N ,Np ∈ T ,N 6= Np} is the set of edges representing the

parenthood between the nodes. In this undirected graph GT , each node has not

only its parent but also its children as its neighbors. For instance, the neighbors for

the node A ∪ E of the binary partition tree in Figure 2.4 are the nodes A, E, and

A ∪ E ∪ F .
For each node N in all the tree-based image representations, we can assign an

attribute function A that characterizes some interesting feature of the region (i.e.,

connected component) represented by that node N . The attribute function can be

any measurement as simple as the region area, or the compactness of the region,

or some shape attribute that describes the region form, or the importance of the

region boundary, or even some speci�cally designed feature based on certain prior

information. A tree with its nodes weighted by an attribute function can be seen

as a nodes weighted graph (GT , FA), where FA is an element of nodes mapping F
given by the attribute function A.

2.4.1 De�nition of tree-based shape space

All the tree-based image representations depicted in Section 2.3 provide a tree-based

shape space ST (the name shape space is sometimes used in the sequel) de�ned as:

De�nition 8 A tree-based shape space ST is de�ned as a set of regions {Ri} (R0

is the entire image domain), that can be organized into a tree structure T for which
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the root node represents R0, and any pair of regions satis�es the nesting property

de�ned by Eq. (2.15) (i.e., they are either nested or disjoint). The neighborhood of

the shape space is de�ned by the inclusion relationship between those regions.

A tree-based shape space ST is built from a tree-based image representation,

which is equivalent to the image in the sense that the image can be reconstructed

from the set of tree nodes (the tree structure is not needed). Hence, a tree-based

shape space is an equivalent image representation. Besides, for the tree-based shape

spaces built from thresholding decomposition based trees, they are invariant to a�ne

contrast changes.

Note also that the tree-based shape space ST is a connected graph which is

similar to the image space. Each node in the image space is an individual point

weighted by some intensity function f , the adjacency of the image space is usually

4-connectivity (resp. 6-connectivity) or 8-connectivity (resp. 26-connectivity) in

2D images (resp. 3D images), while each node in the shape space is a individual

connected component weighted by some attribute function A, the adjacency of the

nodes is given by the parent-child relationship between the nodes (i.e., inclusion

relationship between the regions represented by those nodes) in the shape space.

The similarity between the shape space and the image space shed some light on

a novel concept: applying connected operators on the shape space. This will be

developed in Chapter 3.

2.4.2 Tree-based shape spaces versus scale-space

Following Marr's computational theory of vision [Marr 1983], a number of image

analysis systems are based on a bottom-up architecture, made up of two stages: low

level analysis (characteristic points, contours, regions . . . ) and high level vision tasks

(object recognition, scene interpretation . . . ). It is also assumed that the low level

and high level stages are completely independent. The interesting structures that

can be useful for high level tasks can be located at arbitrary position in the image,

can have any size, and can be very salient as well as very poorly contrasted. So

the low level processes should be uncommitted in terms of position, size and con-

trast [Lindeberg 1994], and its output should be a multi-scale, and contrast invariant

general description independent from any speci�c high level task. The tree-based

shape spaces are very suitable for such desired low level analysis. Many applications

based on low level analysis using the tree-based shape spaces are given in Part III.

A popular multi-scale analysis tool which is widely used in image processing and

computer vision is the scale space. It is a formal theory handling image structures

at di�erent scales, by representing an image as a one-parameter family of smoothed
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images, the scale-space representation, parametrized by the size of the smoothing

kernel used for suppressing the �ne-scale structures [Lindeberg 1994]. The scale

parameter σ can be seen as a third dimension of a 2D image. The main type of

the scale-space is the linear Gaussian scale-space [Lindeberg 1994]. For a given 2D

image f(x, y) its linear Gaussian scale-space representation is a family of smoothed

images L(x, y;σ) obtained by the convolution of f(x, y) with the Gaussian Kernel:

g(x, y;σ) =
1√

(2πσ)
e−(x2+y2)/2σ, (2.16)

such that

L(·, ·;σ) = g(·, ·;σ) ∗ f(·, ·). (2.17)

There exist also some non-linear scale-spaces in the literature in order to cor-

rect some shortcomings of linear scale space, such as edge localization. The �rst

type of such examples is based on non-linear di�usion [Perona 1990, Harvey 1997].

However, these techniques usually tend to be computationally expensive. Another

type of non-linear scale-spaces are based on mathematical morphology. Such mor-

phological scale-spaces are usually more computationally e�cient. Examples are

dilation-erosion scale space [Jackway 1996], open and close scale-spaces [Chen 1989,

Park 1996, Jackway 1998], area morphology based scale-space [Bangham 1996], and

morphological levelings based scale-space [Meyer 2000].

The tree-based shape space inherently embeds a similar morphological scale

space, because the parent of a node is always larger. In consequence, a tree-based

shape space obeys the causality principle, the most fundamental principle of multi-

scale analysis [Koenderink 1984]. Indeed, a region R at certain scale is included in

all its ancestor nodes till the root node. This region R can be seen as a kind of

cause of all its ancestor nodes.

The scale-spaces based on smoothing kernel with di�erent scale parameters blur

the contours in image, and they are not invariant to contrast changes. The tree-

based shape spaces are also multi-scale analysis tools. But contrary to the scale-

spaces, the tree-based shape spaces do not apply a convolution with a kernel. As the

connected components in a shape space are already presented in the original image,

the contours of the regions in a shape space are actual contours in the original image.

Consequently, they are very precised in terms of contours shapes and locations. This

good contour preservation property, as well as those interesting features discussed

in Section 2.4.1 make the di�erences between the scale-space and tree-based shape

space in applications depicted in Part III.
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Figure 2.11: An example (a) and a schematic overview (b) of tree-based connected

operators implementation [Salembier 1998, Salembier 2000]. In (a), the tree �ltering

strategy is a tree pruning process, and for those pixels contained in the pruned nodes,

they take the value of the lowest preserved ancestor in the image reconstruction step.

2.5 Tree-based implementation

2.5.1 Schematic overview

One popular implementation of connected operators described in Section 2.2 relies on

transforming the image into an equivalent representation, the tree-based image rep-

resentation. Image �ltering then involves the design of an attribute function A that

weights some interesting feature of a node of the tree (e.g., a certain shape attribute

As that measures how much a node �ts a given shape), a tree �ltering that simpli-

�es the tree based on the attribute function A, and an image reconstruction step

from the simpli�ed tree that yield a �ltering result [Salembier 2000, Salembier 2009].

An example of such tree-based implementation of connected operators is illustrated

in Figure 2.11 (a) [Salembier 2000], and a schematic overview of such process is

depicted in Figure 2.11 (b). Roughly speaking, a tree-based implementation of con-

nected operators consists of three steps: tree construction, tree �ltering and image

reconstruction. Several available tree-based image representations are already re-

viewed in Section 2.3. The choice depends on the input image and the application,

in general, the type of tree is chosen to make the connected components that we are

interested with or that we want to discard be present in the tree. The tree �ltering

step and image reconstruction step will be respectively detailed in Section 2.5.2 and

Section 2.5.3.
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2.5.2 Tree �ltering strategies

Once the tree is constructed, the connected operators involve a tree �ltering step.

This is the critical step of the entire process. In general, based on the �ltered nodes,

the tree �ltering strategies can be divided into two classes: the tree pruning and

non-pruning strategies. Tree pruning strategies consist of pruning the whole sub-

trees rooted in some speci�c nodes, while keeping the nodes above those speci�c

nodes intact. It can be seen as cutting the sub-branches of the tree. An example

of tree pruning is illustrated in Figure 2.11 (a). If a node is �ltered by a pruning

strategy, then all its descendants are also �ltered. Whereas, for the non-pruning

strategies, a descendant of a �ltered node might be preserved. The use of pruning

or non-pruning strategies depends on the property of the attribute function A. We

distinguish the attribute function A based on whether A is increasing or not.

2.5.2.1 Increasing attributes

One of the simplest case is when the attribute function is increasing, which means:

∀N ∈ T ,A(N ) ≤ A(Np), (2.18)

where Np is the parent of node N . Let A↑ denote the increasing attribute. Some

instances of increasing attributesA↑(N ) for a given nodeN ∈ T are listed as follows:

• Area(N ) = {#p | p ∈ N};

• Height(N ) = max
p∈N

f(p)−min
p∈N

f(p);

• Volume(N ) =
∑
p∈N

(
max
p∈N

g(p)− g(p)
)
with g = ±f (depends on orientation);

• The diameter of the largest circle that can �t into N [Breen 1996];

• The diameter of the smallest circle that encloses N [Breen 1996].

In the case of these increasing attributes A↑, the tree �ltering is rather straight-
forward, it is performed by pruning the nodes whose attribute function A↑ is under a
given threshold, which can be seen as an attribute thresholding. The increasingness

of the attribute function A↑ make this attribute thresholding a pruning strategy.

2.5.2.2 Non-increasing attributes

In practice, many attribute functions A are non-increasing attributes, especially for

those shape attributes As that describe the form of the shapes. Some instances of

non-increasing attributes for a node N is given as follows:



44 Chapter 2. Reviewing tree-based connected operators

• Perimeter of N denoted by P(N );

• Compactness(N ) = 4πArea(N )

P2(N )
, many other shape attributes that measure the

circularity are reviewed in the work of Montero and Bribiesca [Montero 2009];

• Elongation(N ) = lmax(N )/lmin(N ), where lmax and lmin denote respectively

the major and minor axes of the best �tting ellipse having the same moments

as the region represented by N ;

• Sharpness(N ) = Volume(N )
Height(N )×Area(N ) ;

• The maximum geodesic distance in the region of node N [Breen 1996].

For the non-increasing attributes A, the tree �ltering is not straightforward.

Salembier et al. [Salembier 1998, Salembier 2009] and Urbach et al. [Urbach 2007]

propose three pruning strategies (Min, Max, Viterbi) and an attribute thresholding

strategy. The nodes �ltering decisions of these rules for a given attribute threshold

t are described as follows:

• Min: A node N is removed if A(N ) < t or if there exists one of its ancestors

Na such that A(Na) < t. An example of such tree �ltering is depicted in

Figure 2.12 (b).

• Max: A node N is removed if A(N ) < t and for all its descendants Nd
A(Nd) < t holds. An example of the Max rule is depicted in Figure 2.12 (c).

• Viterbi: The removal and preservation of nodes is determined by a cost op-

timization process with Viterbi algorithm [Viterbi 1979]. From a leaf to the

root, each transition of removal decision is assigned a cost. For each leaf node,

the branch with the lowest cost to the root node is taken. Note that this is

a pruning strategy, since the cost of a transition from a node N preservation

to the removal of its parent Np is assigned an in�nitely great cost. So it is

impossible to preserve a node while �ltering one of its ancestor. More details

about the Viterbi rule can be found in [Salembier 1998].

• Attribute thresholding: A node N is removed if and only if A(N ) < t. The

content of the removed nodes are merged with their the lowest preserved an-

cestors. This is rather a straightforward approach to handle the non-increasing

attributes. Attribute thresholding strategy is originally proposed by Breen and

Jones under the name attribute thinnings [Breen 1996]. Based on the image

reconstruction rules which will be described in Section 2.5.3, two di�erent tree

�ltering rules relying on attribute thresholding strategy are proposed: Direct
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Figure 2.12: An example of tree �ltering and image reconstruction in the case of

non-increasing attribute. Top row: Input image and reconstructed images from

the corresponding �ltered trees. Bottom row: Input tree and �ltered trees using

di�erent tree �ltering rules for the non-increasing attribute.

rule proposed by Salembier et al. [Salembier 1998] and Subtractive rule orig-

inally mentioned in [Breen 1996], then popularized by Wilkinson and West-

enberg [Wilkinson 2001], and Urbach et al. [Urbach 2007]. An example of

Direct rule and Subtractive rule of tree �ltering are illustrated respectively in

Figure 2.12 (d) and (e).

Let us remark that all those rules dealing with non-increasing attributes have

some drawbacks. The pruning strategies cannot deal with the case where two in-

teresting objects are present in the same branch. The two attribute thresholding

based rules are although rather simple, they share the practical problems of image

thresholding strategies. It is often impossible to retrieve at the same time all the

expected objects with one unique threshold. Thresholding based strategies are not

robust because the �ltering decisions are made locally and do not depend on neigh-

boring nodes (in the case of an increasing attribute, the decision is also local, but

the decisions on various levels are known thanks to its increasing property).

2.5.2.3 Individual shape analysis in the shape space

For attribute thresholding based tree �ltering strategies, including the tree pruning

strategy in the case of increasing attributes, the regions in the tree-based shape space

are considered individually. The nodes' removal decisions are made locally upon the

attribute values of themselves. The relationship (i.e., neighborhood relationship
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given by the parenthood) between those regions in the tree-based shapes is not

used, which means the edges of the nodes weighted graph with attribute function

representing a tree-based shape space are not utilized. So the attribute thresholding

strategies are not robust.

For pruning strategies dealing with the non-increasing attributes, the parent-

hood relationship between regions in the tree-based shape space is utilized. But

only partial of the neighborhood relationship is used, because for each node, it has

its parent and its children as its neighbors, whereas only the parent is taken into

account. Besides, the pruning strategies maybe interesting in some cases, but two

interesting regions might be nested so that they are present in a same branch, so

the pruning strategies �lter either some interesting regions or many non-interesting

regions remain.

2.5.3 Image reconstruction rules

In the case of pruning strategies, some entire sub-trees are removed, whereas, the

nodes above those sub-trees are intact, the image reconstruction is trivial. For

those pixels contained in the nodes that belong to the removed sub-trees, they

take the value of the lowest preserved nodes. Figure 2.11 (a), Figure 2.12 (b)

and (c) are such instances. In the case of attribute thresholding based strate-

gies dealing with non-increasing attributes, the removed nodes can be anywhere

in the tree, and descendants of a removed node might be preserved. Two im-

age reconstruction rules are proposed: direct rule [Salembier 1998] and subtrac-

tive [Breen 1996, Wilkinson 2001, Urbach 2007].

• Direct: As the same as the pruning strategies, the contents of the removed

nodes merge with the lowest preserved ancestors, and take their values. This

is the most straightforward way to reconstruct the image from the simpli�ed

(i.e., �ltered) tree. However, the local contrasts for the preserved nodes are

no longer maintained, and if we subtract the �ltered image from the original

image, some arti�cial shapes that should not be removed by the tree �ltering

step may present in the residual image fr.

• Subtractive: As above, but the gray level di�erences between those removed

nodes and their parents are taken into account by all their descendants, so that

the local contrast of preserved shapes remains unchanged. The shapes in the

residual image fr are exactly those removed shapes during the tree �ltering

step. More speci�cally, if a node N is removed, and if the tree is a Max-tree

(resp. Min-tree), the descendants of node N are lowered (resp. augmented)

by the same amount of local contrast as node N itself. However, if the tree
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(a) Original image (b) Direct rule (c) Subtractive rule

(d) Average reconstruction (e) Median reconstruction

Figure 2.13: An example illustrating di�erent image reconstruction rules. The �l-

tering is performed by removing some nodes having small average of gradient's

magnitude in the topographic map.

is a topographic map which is self-dual structure, the accumulated gray level

lowering and augmentation are applied to the descendants. More details and

the formal de�nition of subtractive rule can be found in [Urbach 2007].

Other image reconstruction rules might also be interesting, for instance, instead

of using the value of the lowest preserved ancestor, we can take the average or the

median value of the removed contents to reconstruct the image from a simpli�ed

tree. This is not morphological reconstruction, but it might give some interesting

result, especially for the case of a topographic map being a self-dual representation.

An example of these reconstruction rules is shown in Figure 2.13.

2.6 Some examples using the tree-based shape spaces

Since the proposition of those tree-based image representations described in Sec-

tion 2.3, many applications are developed using these tree representations in image

processing and computer vision. The goal of this section is not to develop these

applications, but to show the usefulness of the tree-based shape spaces that we

introduced in Section 2.4 and that are inspired from those tree-based image repre-

sentations. We thus �rstly give a short review of some applications from �ltering,

simpli�cation to segmentation, and visualization of images in image processing re-

lying on the tree-based shape spaces. Besides, some applications in computer vision

based on that space are also reviewed. They can all be seen as the extraction of

�relevant� shapes from the tree-based shape spaces. The de�nition of �relevant� de-
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Figure 2.14: Grain �ltering with di�erent grain sizes.

pends on applications. Note that there are many other applications relying on the

tree-based shape spaces that are not presented here.

2.6.1 Applications in image processing

2.6.1.1 Grain �lter

The grain �lter was originally and formally introduced by Caselles and

Monasse [Caselles 2002]. The grain �lters consist in removing the level sets of an

image whose area is smaller than a given threshold t. They are known as extrema

killers, because they are self-dual �lters that remove all the connected components

starting from the extrema and having an area smaller than t. Unlike the classical

morphological �lters based on structural elements and the linear Gaussian �lters,

the grain �lters only remove small level sets, leaving others unchanged. An example

of the comparison between these �lters is given in Figure 2.2. Note that the result

of a grain �lter with a area threshold t can still have �at zones whose area is smaller

than t, because these �at zones are presented in the nodes whose area is big enough.

An e�cient implementation of the grain �lters is to use the topographic map rep-

resentation along with the area as the attribute function. An example of the grain

�lter with di�erent threshold values is illustrated in Figure 2.14.

2.6.1.2 Meaningful level lines extraction

Meaningful level lines (boundaries of level sets) extraction was proposed by Cao et

al. [Cao 2005]. This proposed meaningful level lines extraction is based on statisti-

cal arguments, which leads to a parameter free algorithm. It is an improvement of

the previous work of Desolneux et al. [Desolneux 2001] which proposes a parame-

terless algorithm using the topographic map to detect contrasted level lines, called

meaningful boundaries. More speci�cally, for a given shape τ in the topographic
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map, the authors de�ne a meaningfulness for the boundary of that shape τ , know

as a level line. The meaningfulness is de�ned using the a contrario model, which

was introduced by Desolneux et al. [Desolneux 2001, Desolneux 2008] within the

framework of Computational Gestalt Theory. It is based on the so-called Helmholtz

principle, which states that: �we naturally perceive whatever could not happen by

chance�. So the a contrario models �rst assume uniform background or noise model,

then de�ne the interesting events as large deviations from this model. these devia-

tions are measured by the Number of False Alarms (NFA). For the meaningful level

lines extraction case, the NFA re�ects the meaningfulness. Then extract one level

line with the smallest NFA among each monotone branch of the topographic map,

where a monotone branch is a branch of the topographic map for which each node

has only one child and the gray level value of each node is either strictly increasing

or strictly decreasing. By this method, only around 1% level lines are selected that

coincide with pieces of edges in the image, and the image represented by these ex-

tracted level lines has nearly no loss of shape contents, and they delivers accurate

shape elements. The details about the de�nition of NFA and meaningful level lines

extraction can be found in [Desolneux 2001, Cao 2005].

2.6.1.3 Image simpli�cation and segmentation

Since the beginning of the introduction of the morphological trees and the binary

partition tree, they are used to implement connected operators which act by merging

�at zones, so there exist many works that achieve image simpli�cation and segmen-

tation relying on the �relevant� shapes extraction from the tree-based shape spaces.

For instance, the work of Salembier et al. [Salembier 1998] which proposes a set of

�ltering strategies that simplify images using the Max-tree representation. Then

in [Salembier 2000], the authors propose to use the binary partition tree to achieve

image simpli�cation, segmentation, and information retrieval. In [Wilkinson 2001],

the authors propose to use the Max-tree and some shape attributes to simplify im-

ages so that the �lament is enhanced. Ballester et al. propose in [Ballester 2007]

to use the topographic map with variational models (e.g., minimize the piecewise

constant Mumford-Shah functional [Mumford 1989]) for segmentation and encod-

ing. In [Lu 2007], the authors propose to simplify the binary partition tree, so the

image by analyzing the second order statistics of some evolvement functions using a

knee function. Knee values show the reluctancy of each merge, which helps to �lter

the tree and yield a simpli�ed image.

A segmentation result can be simply obtained by an horizontal cut of a hierar-

chy of segmentations. The works of Najman et al. [Najman 1996, Najman 2009] are

such instances. In [Felzenszwalb 2004], the authors propose an e�cient graph-based
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image segmentation algorithm using the minimum spanning. It consists in �rst of

all sorting the edges belongs to minimum spanning tree by increasing importance

of pixel edges linking two pixels , and then for each edge of MST in this pre-sorted

order, if the two regions linked by that edge is not merged yet, examine if we can

merge them based on the di�erence maximal intra-dissimilarity and minimal inter-

dissimilarity controlled by a parameter K. In [Guigues 2006], the authors propose

the scale-sets theory that can provide an optimum cut (usually not horizontal) very

e�ciently subordinated to some energy functional to minimize. In [Soille 2008],

Soille proposes an image simpli�cation and segmentation method based on the con-

strained connectivity which yields the α-tree. Then a local range α combined with

a global range ω or not is used to cut the hierarchy that provides a simpli�cation

or segmentation result. In [Serra 2013, Kiran 2014], Serra and Kiran propose a new

approach to �nd optimal cuts in hierarchies of partitions by energy minimization. It

relies on the notion of h-increasingness, and allows to �nd optimal cuts in one pass.

Recently, Cardelino et al. [Cardelino 2013] propose to select the best (optimal) par-

tition (cut) from a hierarchy of segmentations based on the use of a contrario model,

they assign a meaningfulness re�ected by the NFA to each possible partition given

by that hierarchy. The optimal partition is simply given by the most meaningful

partition.

2.6.1.4 Preferential image segmentation

In [Pan 2009b], the authors propose a novel preferential image segmentation method,

which preferentially segments objects that have intensities and boundaries similar

to those of objects in a database of prior images. This method relies on the topo-

graphic map representation. It consists in �rst of all constructing the topographic

map for both images. For the preferential object Op to which the similar objects in

another image f ′ from the database is to be segmented, the intensity and bound-

ary information of the corresponding shape in its topographic map is known. The

proposed method �rst of all select a reduced set of shape candidates in the cor-

responding topographic map of f ′ based on the intensity information, such as the

number of direct children, the relative area change between the shape and its direct

children, the rough similarities of the boundaries based on the compactness. Then

a curve matching step introduced in [Lisani 2003] is applied on the boundaries of

the reduced shape candidates in the topographic map representing f ′ and the pref-

erential shape Op. The candidate shape which best matches the preferential curve

is �nally selected as the preferential segmentation result. Experimental results on a

large image dataset show that this application using topographic map is promising.

The readers are referred to [Pan 2009b] for more details about this application.
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2.6.1.5 Visualization of images

For 3D images visualization, despite the fact that they can not be directly printed

on paper, one usually displays slices, or voxels, or isosurfaces, and expects that the

content of the 3D image is understandable from the �gure. However, in practice,

visualization of 3D images is extremely interesting and di�cult. For the visualiza-

tion by voxels and isosurfaces, some interesting objects may be hidden inside some

surrounding structures, or surrounded by many noises, which make the interesting

objects visualization impossible or di�cult. In [Wilkinson 2001], the authors pro-

pose to use the Max-tree combined with moment of inertia (minimal for a sphere,

and increases rapidly as the object becomes more elongated) as attribute func-

tion to �lter the 3D images of vessels. In the simpli�ed 3D image, the �lament

(i.e., vessels) is enhanced so that we can better visualize the vessels in the image.

In [Westenberg 2007], the authors also propose some other attribute function, such

as elongation, �atness and sparseness to �lter the Max-tree of a 3D image, which

results a simpli�ed image where the interesting objects are more visible.

2.6.2 Applications in computer vision

2.6.2.1 Maximally Stable Extremal Regions (MSER)

Maximally Stable Extremal Regions (MSER) was originally proposed by Matas et

al. [Matas 2002]. It is a method of blob detection in images, which belongs to

the family of local feature detection. It is used to establish the correspondences

between image elements from two images to be compared, and is widely used in

stereo matching, object recognition, and tracking. The MSER was originally de�ned

as follows:

Region Q is a connected component in image.

(Outer) Region Boundary ∂Q = {q ∈ V \Q : ∃ p ∈ Q : e = (p, q) ∈ E}, which
means the boundary ∂Q of Q is the set of pixels adjacent to at least one pixel of Q

but not belonging to Q.

Extremal Region Q ⊂ V is a region such that either ∀p ∈ Q, q ∈ ∂Q : f(p) > f(q)

holds or ∀p ∈ Q, q ∈ ∂Q : f(p) < f(q) holds.

Maximally Stable Extremal Region (MSER). Let Q1, . . . , Qi−1, Qi, . . . be a

sequence of nesting extremal regions (Qi ⊂ Qi+1). Extremal region Qi∗ is maximally

stable if and only if q(i) = |Qi+∆\Qi−∆|/|Qi| has a local minimum at i∗, where | · |
denotes cardinality, and ∆ ∈ Z is a parameter of the method.

The stability function q(i) checks for regions that remain stable over a certain

number of thresholds. If an extremal region Qi+∆ is not signi�cantly larger than

an extremal region Qi−∆, the extremal region Qi is selected as a maximally stable
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extremal region.

The set of extremal regions can be organized into a tree structure: component

tree [Najman 2006] (either a Min-tree or a Max-tree), and the MSER is easily under-

standable using Min-tree and Max-tree representations. As shown in [Donoser 2006],

MSER extracts the regions (nodes) that correspond to local minima of the stability

function along the path to the root of the tree. The stability function of a given node

is given by the di�erence between the area of some (grand-)parent and some (grand-

)child, divided by the area of the node itself. It is reported [Mikolajczyk 2005] that

MSER achieves state-of-the-art repeatabilities and regions accuracies. It is also very

e�cient. Nister and Stewenius propose in [Nistér 2008] a linear algorithm (similar

to the one of Salembier et al. [Salembier 1998]) to compute the MSER.

A variant of MSER is proposed by Perdoch et al. in [Perdoch 2007] called the

Stable A�ne Frame (SAF) for which only local stability is required. Many more

features are obtained with a comparable repeatability score. However, it is much

slower than MSER.

2.6.2.2 Topological approach to hierarchical segmentation using Mean-

Shift

Mean shift is popular method to segment images and videos. Pixels are represented

by feature points which encodes the spatial information of that point in the origi-

nal image and the color information, and the segmentation is driven by the point

density in feature space. It has been shown by Cheng [Cheng 1995] and Comani-

ciu and Meer [Comaniciu 2002] that mean shift is equivalent to a steepest ascent

on a density function underlying the image data. In [Paris 2007], Paris and Du-

rand propose an e�cient scheme to evaluate that density function. They apply the

Morse theory [Milnor 1963] on the explicit representation of the underlying density

function to extract the density modes corresponding to the clusters. Based on the

Morse theory, it has been shown that the density modes are unions of cells of the

Morse-Smale complex. This approach leads to a fast method to compute mean-shift

segmentations. Besides, With the notion of topological persistence introduced by

Edelsbrunner et al. [Edelsbrunner 2000], they build a hierarchical segmentation at

the computational cost of a single-level clustering.

The core structure used in this method is the Max-tree representation con-

structed from the underlying density function de�ned on the feature space, not

directly from the original image. The Max-tree representation make the analysis

of maxima and saddle points very e�ciently. In fact, the �ltering using the topo-

logical persistence in [Paris 2007] is a �ltering by height applied on the Max-tree

representation. It has been shown that this method achieves an accuracy equivalent
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to previous technique but runs faster then all the previous work, especially on large

images and videos. Besides, a hierarchical segmentation can be obtained with no

additional computational cost based on the extinction values using height, known

also as dynamic. This hierarchical segmentation is useful for multi-scale analysis.

2.6.2.3 Scenery images analysis

A �rst example of scenery images analysis making use of the tree-based shape spaces

is proposed by Song and Zhang in [Song 2002] to separate the foreground and back-

ground regions in images. More speci�cally, they made two assumptions about the

image background. Compared to the foreground regions, the background regions

are (1) smoother in intensity; and (2) peripheral in location. In an input image, the

harshness of the foreground is characterized by intensity peaks and valleys, which

correspond to the nodes of topographic map representing small textons whose height

are high. The complete system is consist of �rst of all selecting these nodes from the

topographic map as foreground objects, then connecting those textons controlled

by the distance between them. A noise removal step is also applied by removing

small connected components that contains very few textons after textons connecting

step. Then repair the boundary by connecting all the close points. �nally, a hole

�lling step is performed to achieve the �nal foreground region. It has been shown

in [Song 2002] that such scheme can e�ectively locate background region in images

which satisfy the two assumptions.

Lately, Song and Zhang propose in [Song 2003] a method for analyzing scenery

images to support semantics-based image retrieval. The method makes use of the

monotone tree (i.e., topographic map). The structural elements of an image are

modeled as sub-branches of the topographic map. These structural elements are

classi�ed and clustered on the basis of such properties as color, spatial location,

harshness and shape. Each cluster corresponds to some semantic feature. It has

been show in [Song 2003] that such scheme is e�cient for analysis and retrieval of

scenery images.

2.6.2.4 Classi�cation of images

In [Urbach 2007], the authors propose a multiscale and multishape morphologi-

cal method for pattern-based analysis and classi�cation of gray-scale images us-

ing connected operators relying on the Max-tree representation. Pattern spec-

tra [Maragos 1989, Serra 1982] are commonly used tools for image analysis and

classi�cation, which can be computed using a technique from mathematical mor-

phology known as granulometries [Breen 1996, Serra 1982]. Intuitively, a size gran-

ulometry can be considered as a set of sieves of di�erent grades, each allowing
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details of certain size classes to pass. In [Urbach 2004, Urbach 2007] the authors

propose to use the joint shape-size pattern spectra computed from connected op-

erators which makes use of the Max-tree representation. Compared with previous

existing methods, which use structuring elements, it is stated out that the proposed

method in [Urbach 2007] features three main advantages: 1) The computation time

is independent of the dimensions of the pattern spectrum, since it does not depend

on the number of scales or shapes used. 2) The method can make use of exact shape

attributes to construct a joint 2D shape-size pattern spectra. 3) It is signi�cantly

less sensitive to noise and it is rotation-invariant. The benchmark of the classi�ca-

tion performance on four image datasets shows that their proposed method achieves

better or equal classi�cation performance to the best competitor but with a 5 to

9-fold speed gain.

Morphological pro�les [Epifanio 2007, Tuia 2009] are widely used for the classi-

�cation of high-resolution remote sensing images. Recently, Luo and Zhang propose

in [Luo 2013] a robust auto-dual morphological pro�les for the classi�cation of high-

resolution satellite images. They make use of the topographic map representation,

and extract some other feature pro�les (perimeters, scales, total variations, etc.)

that are more robust than the intensity variations from that representation. The

e�ciencies of their proposed method are validated by experimental results on two

datasets of remote sensing images.

2.6.2.5 Texture indexing

In [Xia 2010], Xia et al. propose a texture analysis scheme, the shape-based invariant

texture indexing, which is invariant to local geometric and radiometric changes.

Their proposed method makes use of the topographic map representation, which is

a multi-scale and contrast invariant representation of images. More speci�cally, for

each texture image, its corresponding topographic map is �rstly computed, then for

each shape in the topographic map, assign some invariant texture feature based on

the second order moments (having many invariant properties, such as translation,

scale, rotation, etc.) of that shape. Then each image is associated with a 1D

histogram of the texture features for those shapes belonging to the corresponding

topographic map. Then the comparison two textual images is performed through

the distance between their 1D histograms of texture features of their shapes. Their

proposed texture indexing approach is validated by performing classi�cation and

retrieval experiments on three texture databases. Their obtained results outperform

previous state of the art in locally invariant texture analysis.
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2.6.2.6 Object detection

In [Vilaplana 2008], Vilaplana et al. propose an approach of object detection based

on the use of binary partition trees. The BPT provides a tremendously reduced

search space for the object detection task. In order to handle the compromise

between computational complexity reduction and accuracy, the authors propose to

distinguish two zones in the BPT: the accuracy space providing preciseness to the

description (lower scales) and the search space for the object detection task (higher

scales). These two zones are de�ned by specifying a point of merging sequence why

is obtained by assessing a stop criterion. A rough object detection is obtained by

searching the node in the search space which is most likely to be a meaningful object.

Then the region represented by this detected object node is re�ned by introducing

a shape �tting step. The object re�nement step is performed in the accuracy space.

Various experimental results in [Vilaplana 2008] illustrate the generality and the

e�ciency of their proposed method for object detection.

2.7 Conclusion

We have reviewed the tree-based connected operators in this chapter. They rep-

resent the context of the core concept of our PhD work. Many tree-based image

representations are reviewed. And some application examples that rely on those

tree-based image representations are shortly introduced to demonstrate their use-

fulness for many problems in image processing and computer vision. The novelty of

this chapter is the introduction of the tree-based shape space. It is the corner stone

of our proposed framework described in Chapter 3. This notion provides us with

a new point of view of the classical connected operators. They can be seen as an

atomic analysis of this shape space, without using the structure of the tree. Besides,

many applications in image processing and computer vision relying on tree repre-

sentations can be seen as relevant/representative points selection from the shape

space. In some cases, the selection/decision is performed individually, whereas, the

local structure of the tree is sometimes used to guide the selection/decision.





Chapter 3

Shape-based morphology

framework

This chapter presents the core concept of our PhD work presented in this thesis:

the framework of shape-based morphology. The basic idea of this framework (see

Section 3.1) is to apply the connected operators in the tree-based shape space.

It consists of two tree constructions: one is constructed from the image, and the

second one is constructed from the �rst tree representation. The principle ex-

plaining the rationale behind this framework is detailed in Section 3.2. We will

show that this framework allows us to provide a simple de�nition of the MSER

method [Matas 2002] and an extension of this method (see Section 3.3). Besides,

this framework has three main consequences. 1) For �ltering purpose, detailed in

Section 3.4, it is a generalization of the classical existing connected operators. Two

novel kinds of �lters are introduced: the shape-based lower/upper levelings, and

the self-dual morphological shapings. 2) As shown in Section 3.5, this framework

can be used to object detection/segmentation by selecting relevant points from the

shape space. 3) This framework provides a way to transform any tree representation

into a hierarchy representing a hierarchical image simpli�cation/segmentation. This

aspect will be detailed in Section 3.6.

3.1 Overview of the framework

3.1.1 Classical tree-based connected operators

As reviewed in Section 2.5 and depicted in Figure 2.11 (b), the classical tree-based

connected operators is consisted of three steps: tree construction, tree �ltering, and

image reconstruction from the simpli�ed tree. The core process of such process

relies on the tree �ltering step. For an increasing attribute function A↑, the tree

�ltering is simply performed by pruning the leaves which is equivalent to applying

an attribute thresholding. For a non-increasing attributes (the most usual cases,

e.g., many shape attributes), the pruning strategies reviewed in Section 2.5.2 do

not take into account the possibility that several relevant objects can have some
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inclusion relationship, meaning that they are on the same branch of the tree. For

attribute thresholding strategies, one simply removes the nodes of the tree for which

the attribute is lower than a given threshold. Such a thresholding does not take into

account the intrinsic parenthood relationship of the tree, the regions in the shape

space are analyzed individually. It is often impossible to retrieve all expected objects

with one unique threshold. Figure 3.1 shows the evolution of a shape attribute, the

circularity, along two branches of the topographic map. The light round shape and

the dark one are both meaningful round objects when compared to their context.

However, their attribute values are very di�erent. In order to obtain the light

one, a high threshold is required, but then some non-desired shapes appear in the

background in Fig. 3.1 (f).

3.1.2 Connected operators on shape space

The founding idea of the framework that we call shape-based morphology is to apply

connected �lters on the tree-based shape space ST de�ned in Section 2.4, being the

space of all the nested or disjoint components of the image, structured into a graph

by the parenthood relationship (i.e., the neighbors of a node are its children and its

parent). Each node in the shape space is weighted by an attribute function A. This
process of shape-based morphology is illustrated by the black+red path of Figure 3.2.

Note that the process depicted in the red block of Figure 3.2 is exactly a tree-based

connected operator applied on the tree-based shape space ST induced by a tree-

based image representation T . It is composed of three steps: tree T T construction,

tree T T �ltering, and a simpli�ed tree T ′ (equivalent to the simpli�ed image f ′

of the connected operators applied to the space of image) reconstruction from the

simpli�ed tree T T ′. The use of tree-based shape space make this process act by

merging �at zones, which implies that the shape-based morphology still belongs to

the family of connected operators.

This surprising and simple idea of the shape-based morphology framework has

several deep consequences:

• This framework allows us to give a new point of view of the widely used

MSER [Matas 2002], and it also gives us the possibility to extend the de�nition

of MSER by analyzing the tree-based shape space based on some attribute

function other than the stability function used in the original de�nition of

MSER [Matas 2002]. This will be detailed in Section 3.3.

• For the �ltering purpose, it will be shown in Section 3.4 that this framework

encompasses some usual attribute �ltering operators. Novel connected �lters

based on non-increasing criterion can also be proposed. When the �rst tree T
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Figure 3.2: Classical connected operators (black path) and our proposed shape-

based morphology scheme (black+red path).

is respectively a Min-tree or a Max-tree [Salembier 1998], such �lters are new

morphological lower or upper levelings [Meyer 1998], [Meyer 2004]. When the

�rst tree T is the topographic map, it gives rise to a novel family of self-dual

connected �lters that we call morphological shapings.

• This framework can also be used for object detection and segmentation pur-

pose, where the basic idea is that the local minima of some attribute function

A correspond to meaningful objects, and the morphological �ltering in shape

spaces helps to remove meaningless local minima, so does the meaningless

objects. This will be detailed in Section 3.5,

• By expanding the idea of the principle of object detection, we can weight the

contours of regions represented by the local minima in the shape space by

the �ltering force (known as extinction value [Vachier 1995]) for which a local

minimum disappear, the obtained image of weight is a saliency map which is

equivalent to a hierarchy of image segmentation. Consequently, the framework

of shape-based morphology provides an e�cient way to transform hierarchy

(see Section 3.6).

Roughly speaking, it will be shown in the sequel that the proposed framework

of shape-based morphology is a versatile framework that can be used for extend-

ing MSER, image �ltering, object detection/segmentation, and transformation of

hierarchy.
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3.2 Principle of the shape-based morphology

Let us explain the principle of the shape-based morphology that acts by applying

connected operators on the tree-based shape space, instead of on the space of image

directly. We will detail each step of the framework depicted in Figure 3.2.

3.2.1 First tree construction

As illustrated in Fig. 3.2, the �rst step of shape-based morphology is to construct

a tree-based image representation T , which is equivalent to the image f . Di�erent

trees are reviewed in Section 2.3. The choice of the kind of tree depends on the

targeted application. The criterion to choose a particular tree among the set of

trees is that the shapes (objects) of interest, are present as connected components

of this tree. As stated in Section 2.3, all trees can be constructed e�ciently.

During this tree construction, we are able to compute incrementally a lot of in-

formation, based on which the attribute A (some interesting feature) characterizing

the corresponding connected components will be obtained. The attribute A can

be as simple as for instance, the shape area (increasing attributes), or some more

evolved ones which are non-increasing and usually more interesting. That is for

example the case of compactness, or elongation, etc [Westenberg 2007].

As explained in Section 2.4, a tree-based shape space ST given by a tree-based

image representation T with nodes weighted by an attribute function A is equivalent

to a node weighted graph (GT , FA), where GT = (TN , Te), TN is the set of nodes

{N |N ∈ T }, and Te is the set of edges Te = {(N ,Np) | N ,Np ∈ T ,N 6= Np}
that encode the parenthood relationship between nodes. FA is an element of nodes

mapping F given by the attribute function A. The Figure 3.3 depicts a simple tree

T with four regional minima (represented by red circles) on the graph.

3.2.2 Second tree construction

Just like the �rst tree construction, a second tree-based image representation T T
is constructed in this second step. This second tree T T is built from the graph

(GT , FA), whereas the �rst tree was built from the input image. The second tree

T T is either a Min-tree or Max-tree representation. The choice between them is

based on the application and on the nature of the attribute function A. In the case

of non-desired shapes �ltering, the criterion is to keep the vertices in GT (i.e., nodes

N ∈ T ) representing the non-desired shapes near the leaves of the second tree T T .
For example, if we want to �lter out the non-desired shapes, and if A encodes the

probability for a shape to be of a desired type, the minima of the space of shapes

are the shapes that are less probable to be of that type, compared to their parents



62 Chapter 3. Shape-based morphology framework

T
J

G

A4 B5

C2

E3

H1

D4

F3

I5

K6

3

1

0 0

0

0 22

13

24
TT

1

2

3

4

5

6

{H}

{C}

{CEH}

{ACEH}

{ABCEH}

{F}

{FD}

{FDI}

{G}

{GJ}

{ABCDEFGHIJK} 5

T
J

G

A4 B5

C2

E3

H1

D4

F3

I5

K6

3

1

0 0

0

0 22

13

24
TT

1

2

3

4

5

6

{H}

{C}

{CEH}

{ACEH}

{ABCEH}

{F}

{FD}

{FDI}

{G}

{GJ}

{ABCDEFGHIJK} 5

' '

Figure 3.3: An example of the work�ow of shape-based morphology with T T being

the Min-tree of T . Circles with capital letter inside: nodes N ; Blue values: �rst

attribute A; Circles without letter inside: nodes NN ; Red values: second attribute

AA (being the height of the �rst attribute A in this example); Dashed circles:

�ltered nodes with a given threshold 2 for the second tree pruning.
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and children, i.e., the neighbors of the node representing the shape in the graph

(GT , FA). Then the choice of T T will be a Min-tree representation. However, if

we want to keep the shapes being very likely to the desired shapes, the criterion

is chosen to make the leaves of T T correspond to the desired shapes. Then T T
will be the Max-tree. Each node NN of the second tree T T is a set of neighboring

connected components with similar type of shapes. Remark also that two di�erent

�objects� located in the same branch of T are now possibly present on two di�erent

branches of T T (e.g., in Figure 3.3 the node C and H of T are now in two distinct

branches of T T ).
A second attribute AA characterizing each node NN of the second tree T T is

required to apply the second tree processing. It is always designed to be an increasing

attribute in order to make the second tree �ltering be a simple pruning strategy.

The design of this second attribute AA is quite �exible. Usually, it can be also

computed incrementally during T T construction, based on the �rst attribute A (For

instance, the height, or the volume of A), or based on the contextual information

on the image domain around the shapes that NN represents. An example of this

later case is the area, a second example is the total variation inside the region

formed by the union of element �region� RN of shapes contained in the node NN :

{N |N ∈ T ,N ∈ NN}, where the induced elemental �region� RN for a given node

N is de�ned as RN = {p | p ∈ N , p /∈ C(N )}, C(N ) denotes all the direct children

of the node N . A such example of second attribute function AA is depicted in

Figure 3.4.

The Figure 3.3 gives an example of T T . It is a Min-tree of T . The four regional
minima of the graph (GT , FA) are presented as four leaves (red circles) of T T . The
second attribute AA in this example is the height of A.

3.2.3 Second tree �ltering

The second tree �ltering is performed based on the second attribute AA, which is

properly designed to be increasing. The second tree �ltering is a pruning based

on comparing AA to a given threshold. Let us remark that depending on the

application, two di�erent pruning strategies can be used. For the purpose of �ltering

out some non-desired shapes, the nodes to be pruned are the subtrees rooted just

above the leaves. In the case of selecting the shapes corresponding to the desired

shapes (represented by the leaves of T T ), the pruning strategy removes the nodes,

that are closer to the root node of T T . It is equivalent to preserving the subtrees

containing the leaves.

The second tree in Fig. 3.3 is �ltered by pruning the nodes NN whose attribute

value AA (the height of A) is less than 2. This is an example of �ltering the
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Figure 3.4: Illustration of second attribute AA being the total variation inside

the region given by the union of element �region� of shapes contained in a node

NN . (a) A branch of the tree in Figure 3.3, the nodes inside the ellipse form the

node NN = {HCE} in the second tree T T . (b) The underlying region of image

represented by the branch of tree T in (a), the total variation inside the region

covered with oblique lines correspond to AA(NN ).

non-desired shapes around the leaves.

Let us mention also another interesting variant of the second tree �ltering strat-

egy. It is based on the extinction value [Vachier 1995] on the basis of the increasing

attribute AA. If for example, the interesting shapes corresponding to nodes being

minima of A (a context-based energy estimator [Xu 2012] (see also Chapter 7) and

the Number of False Alarms (NFA) [Cao 2005] are such instances) on the graph

(GT , FA), and we want to keep the shapes which are very likely to be interesting

ones. The second tree T T will be the Min-tree. Let ≺ be a strict total order on the

set of minima m1 ≺ m2 ≺ · · · ≺ mn in a decreasing order of signi�cance, such that

mi ≺ mi+1 whenever A(mi) < A(mi+1). The extinction value E for a minimum mi

is de�ned by:

E(mi) = AA(NNmi−
mi )−AA(NNmi), (3.1)

where NNmi is the leaf of T T corresponding to the node mi of the graph (GT , FA),

and NNmi−
mi denotes the lowest node on T T containing NNmi that does not contain

any leaf NNmi′ with i
′ < i.

The extinction value of a minimum measures the signi�cance of this minimum.

The �ltering strategy based on the extinction values is to preserve (or remove) only

the blobs determined by a minimum whose extinction value is higher than a given
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Figure 3.5: Illustration of the extinction values of three minima. A, B, and C are

three local minima, and hm denotes the extinction value of height for the corre-

sponding minimum m.

value λ and whose attribute AA is also below λ. The advantage of this strategy is

that it preserves only these shapes which are meaningful enough compared to their

context. For example, the red part in Fig. 3.5 is preserved for the value given by

the purple line, but the blobs corresponding to minima B and C are removed. In

this example, AA is the height and the extinction value of the height is also known

as the dynamic of a minimum.

3.2.4 Tree restitution

The step of tree restitution is trivial. The simpli�ed tree T ′ is reconstructed by

removing the set of nodes {Ni} contained in the series of �ltered nodes {NNk}. For
example, the simpli�ed tree T ′ in Fig. 3.3 is obtained by removing the nodes (dashed

circles) contained in �ltered nodes of T T ′. Note that, in this example, the nodes

C and H are removed, while the node E lying between them in the same branch

is preserved. None of the existing pruning strategies described in Section 2.5.2 can

achieves such a result. Indeed, the nodes E and J with A = 3 are preserved, while

the node F with A = 3, and even the node D with A = 4 are �ltered out. Such a

behavior cannot be obtained with a threshold-based strategy. In fact, shape-based

morphology is more �exible than conventional connected operators and brings some

new possibilities.
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3.3 De�nition of MSER on the shape spaces

3.3.1 A point of view of MSER using the shape space

As discussed in Section 2.6.2.1 and as shown in [Donoser 2006], the MSER is easily

understandable using the tree-based shape spaces given by the Min-tree and Max-

tree representations. Here we will provide a novel point of view of MSER in spirit

of corner detection.

The corners in images are robust features having many invariant or covariant

properties. Corner detection is frequently used in many applications of computer

vision for its robustness and reasonable number of points, such as motion detection,

image registration, image mosaicing, panorama stitching, video tracking, 3D mod-

elling, and object recognition. The Harris corner detector [Harris 1988] is one of

the popular corner detection method. It extracts the corner points in the space of

image by �nding extrema of a corner measure based on the second moment matrix

at some �xed scale. Such a process can be seen as �rst of all de�ne a searching

space (e.g., all points of the space of image for corner detection), then de�ne some

robust measurement upon which the decision of robust points selection is made.

The measurement should satisfy many invariant or covariant properties, such as,

invariant to viewpoint changes, contrast changes, scale changes, blur changes, . . . ,

the measurement based on the second moment matrix satis�es some of these invari-

ances. Then the decision based on this measurement should also be made under

some invariances, the choice of extrema is a appropriate one.

In the same spirit, the MSER is in accord with the principle of corner detection

methods. Whereas, in the case of MSER, the searching space is the tree-based shape

space given respectively by the Min-tree and Max-tree representation. This shape

space is a reduced searching space compared with the number of points of the space

of image. The measurement is stability function (see Section 2.6.2.1 and Eq (3.2))

de�ned on each region of in the space. This stability function is only based on the

area variation, which satis�es most of the invariant properties mentioned above.

The decision of the selection of robust regions in the space of shapes is conducted

by the local minima extraction, which is similar with the extrema choice in the case

of corner detection.

Both the corner detection and MSER extraction are performed by selecting ro-

bust features in the space of features being respectively the space of image and the

space of shapes. However, in the case of corner detection, a multi-scale corner detec-

tion is usually required to make it robust to scale changes. A scale-adapted Harris

corner detector and its extension Harris-Laplace with scale selection by �nding ex-

trema of the Laplacian of Gaussian (LoG) �lter were proposed in [Mikolajczyk 2004].
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The corner detection belongs to the family of scale-space based local feature detec-

tion. It is also well-known that the corner detection methods usually extract several

corner points that correspond actually to a real single corner in image. Whereas, the

MSER de�ned in the tree-based shape space is already multi-scale thanks the multi-

scale property of the tree-based image representations and the invariance to scale

changes of the stability function. Besides, the stable regions extracted by MSER

provide a compact local path (elliptic �tting of the real regions in shape space)

upon which some descriptor [Lowe 1999, Lowe 2004, Forssen 2007] is computed to

establish the correspondence between a pair of images. In fact, the tree-based shape

space is a multi-scale image representation, it is invariant to a�ne transformation of

image intensities, covariant to adjacency preserving transformation, all these prop-

erties make the tree-based shape space well suited for local feature detection, which

contributes to the main reason of the success of MSER. The stability function is

certainly also an important reason that preserves these invariance properties of the

tree-based shape space, and it contributes also to the success of MSER. However,

note that due to the fact that the stability function is based on a parameter re-

lated to image contrast, the MSER is not truly contrast invariant. It is reported

in [Mikolajczyk 2005] that MSER outperforms the corner detection in term of re-

peatability test [Mikolajczyk 2005], in the case of viewpoint changes, scale changes,

and contrast changes.

A more detailed comparison between scale-space based local feature detectors

and shape-space based local feature detectors will be given in Section 4.2.1.

3.3.2 Matching the tree-based shape spaces

MSER is a blob detection method, it extracts stable (usually contrasted) regions. In

practical use, the centroid of the regions extracted by MSER in the shape space of

an image is used as the interest points based on which the correspondence between a

pair of images is established. Such correspondence matching is achieved through the

point descriptors [Lowe 1999, Lowe 2004, Forssen 2007] computed upon a local patch

(usually an elliptic region) around the points, the distance between the descriptors of

points in two images is then used to estimate the correspondence. Such a classical

process (i.e., keypoints detection + descriptors + correspondence estimation) is

widely used in many applications.

Unlike the corner detection methods, for which the relationship between the

keypoints in the space of images is unclear, the structure in the space of image

around a keypoint is trivial, and the searching space is too large, the shape space

provides a reduced searching space. More interestingly, the regions extracted in

the shape space by MSER obey the nested property reported in Eq (2.15), i.e.,
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two regions of MSER are either disjoint or one is included in the other one, the

structure around a MSER in the shape space (i.e., a point in the shape space) is

rich in terms of local information contents (e.g., the number of children). These later

two interesting properties are obtained thanks to the edges (tremendously reduced

compared with the edges in the space of images) in the shape space that re�ect the

inclusion relationship of neighboring regions in the shape space. However, these two

interesting properties are not utilized in the classical scheme using MSER. It might

be interesting to make use of these properties by replacing the descriptors computed

upon a local patch around the keypoints (centroid of MSERs) by the local structures

around the MSERs in the shape space. In another word, the local structure around

a MSER Rs in the shape space is served as a descriptor describing/characterizing

that MSER Rs. This proposition is equivalent to match directly the underlying tree-

based shape spaces of a pair of images based on some located points (i.e., MSERs)

of that shape space. This is somehow in the same spirit with the work of Pan et

al. [Pan 2009b] where the authors a preferential image segmentation method based

on the use of tree-based shape space given by the topographic map representation

(see Section 2.6.1.4 and [Pan 2009b]) for more details.

The matching of two tree-based shape spaces seen as graphs is in general a NP-

hard problem. But we only would like to match a tremendously reduced interesting

nodes extracted by MSER. This might help to reduce the complexity of graph match-

ing. Besides, there exist some e�cient graph matching optimization techniques, such

as the work of Torresani et al. [Torresani 2008]. The proposition of matching di-

rectly the tree-based shape space is still a open question that we did not exploit. We

have tried the tree-based shape space matching through another interesting nodes

spotting method which will be detailed in Chapter 5. It is a simpli�cation method

based on minimizing the piecewise Mumford-Shah functional [Mumford 1989] that

extracts few salient shapes. A such based shape space matching is illustrated in

Figure 3.6, the underlying tree representation is the topographic map.

3.3.3 Extending MSER

Using the shape space given by a tree-based image representation T (either a Min-

tree or Max-tree), the MSER is de�ned as the local minima of the attribute function

given as follows:

Aq(N ) =
(|N+

∆ | − |N
−
∆ |)

|N |
, (3.2)
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Figure 3.6: Feature correspondence via the tree-based shape space matching. The

shape space is given by the topographic map representation, the keypoints (i.e., in-

teresting regions) in the shape space is extracted by a simpli�cation method detailed

in Chapter 5.

where | · | denotes the cardinality, N+
∆ and N−∆ are respectively the lowest ancestor

and the highest descendant such that

|f(N+
∆ )− f(N )| ≥ ∆, (3.3)

|f(N )− f(N−∆ )| ≥ ∆, (3.4)

where | · | denotes the absolute value. Note that the lowest ancestor node N+
∆ is

unique, whereas the highest descendant node N−∆ may not be unique, because a

bifurcation node might be present below the node N , in this sense the stability

function in Eq (3.2) is not quite well de�ned. One popular choice is to chose the

biggest highest descendant N−∗∆ that satis�es Eq (3.4), de�ned as follows:

N−∗∆ = argmax(|N−i∆ |), i = 1, . . . , n, (3.5)

where {N−i∆ | i = 1, . . . , n} is the set of disjoint descendants (i.e., in di�erent

branches of the tree T ) that obey Eq (3.4). The public implementation in OpenCV

is a such instance, where a small modi�cation of Eq (3.2) is also applied, de�ned by:

A′q(N ) =
(|N | − |N−∗∆ |)

|N |
, (3.6)

An variant stability function is used in the public implementation of

VLFeat [Vedaldi 2008], where the area variation is de�ned using only the node itself

and its unique lowest ancestor which obeys Eq (3.3), it is given by:

A′′q (N ) =
(|N+

∆ | − |N |)
|N |

, (3.7)
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Note also that the stability function make use of a parameter that depends on

the contrast of image, which make it not truly invariant to local contrast changes.

The evolution of the stability function of Eq (3.2) along a branch starting from a

leaf (left side) to the root (right side) of the Min-tree for a simple image is given in

Figure 3.7 (a) (∆ = 10) and (c) (∆ = 2). Figure 3.7 (b) and (d) are respectively

the zoomed curves of (a) and (c) by removing the nodes whose values (axis Y) are

too large, in order to better visualize the local minima of the stability function.

Note that the number of children depicted in Figure 3.7 (f) shows that almost all

the nodes of that branch have only one child, so the local minima shown in (b)

and (d) are actually local minima in the shape space, that correspond to MSERs.

However, from Figure 3.7 (b), we can see there are actually many MSERs that are

very similar, a clean up step is necessary to regroup them. In fact, in the both public

implementation: OpenCV and VLFeat [Vedaldi 2008], the MSERs being too small or

too large are removed, the MSERs having a big stability function values are �ltered,

and the MSERs that are similar in terms of position and size are regrouped. These

processes can be seen as a �ltering in the shape space based on the attribute function

of Eq (3.2). From this point of view, the framework of shape-based morphology

can be used to extend the MSER. More importantly, as discussed in Section 3.3.1,

the main reason of the e�ciency of MSER is that the shape space given by Min-

tree and Max-tree representations have many invariant properties and the stability

function (i.e., a special example of the attribute function) preserves those invariant

properties when it is used to extract the critical regions in an invariant/covariant

way by spotting its local minima. Following this principle, any shape space given by

a tree representation having those invariant properties and any attribute function

that preserves those properties can be used. The minima or maxima of the attribute

function gives also the interesting regions in a invariant/covariant way for a pair of

images. A such example is the average of gradient's magnitude along the boundary

of a region in the shape space, it is given by:

A∇(N ) =
( ∑
e∈∂N

grad(e)
)
/|∂N|, (3.8)

where ∂N denotes the boundary of the region represented by N , |∂N| denotes the
length of the boundary, and grad : E → R is an image of gradient's magnitude.

The local maxima of this attribute function A∇ extract the interesting regions in

the shape spaces. The evolution of the attribute function A∇ for a simple image is

depicted in Figure 3.7. There are also many local maxima that correspond to similar

interesting regions, a �ltering step in the shape space is also required. However,

note that the interesting regions extracted by using the stability function of MSER

in Eq (3.2) and by using the attribute function in Eq (3.8) are quite similar but
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not identical. But since the centroid of the interesting regions is used to estimate

the transformation between a pair of image, the extracted interesting regions from

the shape space are robust to small local geometrical deformation, which is one of

the many advantages of shape-space based local feature detectors. A comparison

of MSER and the one using the attribute function in Eq (3.8) will be shown in

Chapter 4.

The MSER extracts usually contrasted regions in the shape space, which results

in a small number (but reasonable) of extracted regions. This limits the application

of MSER. For instance, in spite of the accuracy and e�ciency of MSER, for the

applications such has image registration, image mosaicing, panorama stitching, and

3D modelling, where a high number of features is required, the corner detection is

usually more preferred than MSER. Although lowering considerably MSER stability

margin gives much more points that would probably be interesting. However it

creates numerous local minima of the stability function, many of them represent

similar regions (see Figure 3.7 (d)), merging those minima is unsound. A topology

based interesting regions extraction method that we call Tree-Based Morse Regions

(TBMR) will be detailed in Chapter 4. It relies on the Morse theory [Milnor 1963],

and no attribute function is required, only the structure of the shape space given by

Min-tree and Max-tree is needed. Numerous advantages will be presented including

a much more important number of extracted features.

3.4 Filtering

Connected operators are �ltering tools that act by merging the �at zones. The

framework of shape-based morphology is proposed by expanding the idea of tree-

based connected operators. Filtering is one direct consequence of the framework,

which we will discuss in this section. Note that the �lters disposed with the frame-

work of shape-based morphology belong always to the family of connected operators

thanks to the use of shape-spaces given by tree-based image representations.

3.4.1 More possibilities and �exibilities

As reviewed in Section 2.5.2, the existing tree-based connected operators treat the

regions in the shape space individually. The decision of tree �ltering is made without

making use of the inclusion relationship between those regions. We propose to apply

the connected operators in the tree-based shape space to make up that issue and to

expect a more robust tree �ltering decision.

In fact, as we will show in the sequel, for the �ltering purpose, the framework of

shape-based morphology encompasses some usual attribute �ltering strategies, and
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Figure 3.7: Evolution of stability function of Eq (3.2) and average of gradient's

magnitude en Eq (3.8) of a branch starting from a leaf node (left side of Axis X) to

the root node (right side of Axis X). Axis Y represents the value of corresponding

attribute function. The images on the bottom of each �gure represents the cor-

responding regions represented by the nodes at the corresponding locations in the

shape space. (a-b) Normal and zoomed stability function with ∆ = 10; (c-d) Nor-

mal and zoomed stability function with ∆ = 2; (e) Average of gradient's magnitude

along the boundaries. (f) Number of children.



3.4. Filtering 73

two new class of connected operators based on the non-increasing shape attributes

As are introduced. Indeed, as shown in Figure 3.3 and discussed in Section 3.2.4,

the shape-based morphology can give some �ltering results that is impossible by the

existing tree �ltering strategies.

3.4.2 Encompassing the classical attribute �lters

In the most trivial case, the attribute A is increasing, and the classical connected

�lterers are equivalent to a pruning of the tree.

Proposition 1 If A is increasing, let T T be the Min-tree built from the tree-based

shape space seen as a node weighted graph (GT , FA) induced by T and A, then T T
is isomorphic to T .

Proof: Since A is increasing, so for any given node Nk, A(Nk) ≤ A(Na) holds
for any ancestor node Na of Nk, which means that the leaves of T are regional

minima on the corresponding node weighted graph (GT , FA). These regional minima

lie also on the leaves of T T being the Min-tree. Furthermore, as the adjacency

(graph edge) of the graph GT represents the parenthood, for any pair of neighboring

vertices (Ni,Nj) in GT , either Ni = parent(Nj) or Nj = parent(Ni). Suppose that
the former one holds, then Nj ⊂ Ni,A(Nj) ≤ A(Ni) ⇔ FA(Nj) ≤ FA(Ni). Let

Nk ∈ TN be any neighboring vertex (6= Ni) of Nj , since the parent of each node on

a tree structure is unique, so Nk is a child of Nj , which means FA(Nk) ≤ FA(Nj).
In consequence, we have NNi = parent(NNj), where NN denotes the �rst node in

the second tree that contains the vertex N of the node weighted graph (GT , FA).

So T T is isomorphic to T .
Let AA be the current level of the second tree T T , which means ∀NNk ∈

T T ,AA(NNk) = A(Nk). Pruning T T is equivalent to pruning T . In other words,

the shape-based morphology encompasses the classical �ltering strategy in this case,

but we do not have to test whether the attribute A is increasing or not.

3.4.3 Encompassing attribute thresholding strategy

A shape attribute A is more often non-increasing. In such a case, there exists

some pair of vertices (Ni,Nj) composing an edge in the graph GT , such that Nj =

parent(Ni), and A(Nj) ≤ A(Ni) ⇔ FA(Nj) ≤ FA(Ni). For example, Let T T be

the Min-tree of the graph (GT , FA), then the node NNi is hence an ancestor of

NNj on T T . So T T is di�erent from T . Furthermore, just like the increasing

attribute case, let AA be the current level of T T , we have AA(NNi) = A(Ni).
Pruning T T on the basis of AA is equivalent to thresholding T . Accordingly, the
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shape-based morphology encompasses the threshold-based strategies (Direct and

Subtractive rules). But let us also remark that it is nevertheless impossible to retrieve

the same pruning strategies as the classical ones (Min, Max, and Viterbi) described

in Section 2.5.2.

The second attribute AA can be di�erent from A; for example, it can be any

measure based on A or even some new attribute/measure computed from the image

domain (e.g., the total variation inside the context region represented by the node

NN ). This is when the shape-based morphology becomes di�erent. In general,

two new classes of connected operators will be introduced. The �rst class is de�ned

from the leveling family, and is named shape-based lower/upper levelings (see Section

3.4.4). The second class is the self-dual morphological shapings (see Section 3.4.5).

3.4.4 Shape-based lower/upper levelings

We will now detail the �rst type of novel connected operators given by the shape-

based morphology, in the case of T being a Max-tree or Min-tree representation of

the image f .

Proposition 2 If the tree T is a Max-tree, the shape-based morphology gives an

upper leveling, named as shape-based upper leveling ψs↑.

Proof: Let T be a Max-tree representation, then no matter what type of tree

T T is and no matter how T T is pruned, the simpli�ed tree T ′ has always a Max-tree

structure in the sense that gray level for the ancestors is always lower. In the image

reconstruction step, the pixels stored in some removed node Nr take the gray level of
the �rst preserved ancestor Na (Direct rule) or even lowered with the change induced
by those removed ancestors (Subtractive rule). Anyway, ∀x ∈ V, ψs↑(f)(x) ≤ f(x)

always holds. By De�nition 6, such an operator ψs↑ is a upper leveling.

Proposition 3 If the tree T is a Min-tree, the shape-based morphology gives a lower

leveling, named as shape-based lower leveling ψs↓.

Proof: Let T be a Min-tree, the simpli�ed tree T ′ is still a Min-tree in the sense

that the gray levels of the ancestors are always higher. So, as the same as the proof

in the case of T being a Max-tree, ∀x ∈ V, ψs↓(f)(x) ≥ f(x) holds. According to

De�nition 5, such an operator ψs↓ is a lower leveling.

E�ectively, the fact that shape-based morphology in the case of T being a Max-

tree (resp. Min-tree) results in a shape-based upper (resp. lower) leveling is because

any anti-extensive (resp. extensive) operator is a upper (resp. lower) leveling. Let us

also remark that such an operator ψs is not a leveling, since either f(x) ≥ ψs(f)(x)
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or ψs(f)(x) ≥ f(x) holds for any vertex of the graph, therefore, ∃x, y ∈ V , f(x) ≥
ψs(f)(x) and ψs(f)(y) ≥ f(y) do not hold in the same time. So the operator ψs is

not a leveling except in the case that ψs(f) is constant.

The classical upper (resp. lower) leveling removes the details of the regional

minima (resp. maxima). In practice, it is equivalent to pruning the Min-tree (resp.

Max-tree) with an increasing attribute A↑. Nevertheless, the shape-based upper

(resp. lower) leveling is based on some connected �lterings on the shape space

built from the Max-tree (resp. Min-tree) representation. It �lters out the details of

unwanted bright (resp. dark) shapes on the basis of the user de�ned non-increasing

shape attributes.

Proposition 4 If the second tree T T �ltering is idempotent, then the shape-based

upper leveling ψs↑ and lower-leveling ψs↓ are idempotent.

Proof: Let T0, T T0, T T ′0 , and T ′0 be the tree structures corresponding to the

shape-based morphology ψs applied to f . T1, T T1, T T ′1 , and T ′1 are the tree struc-

tures corresponding to ψs applied to f ′ = ψs(f). As T ′0 and T1 are a Max-tree or

a Min-tree, it is trivial that T1 = T ′0 , thanks to the strict �xed order of the gray

level between neighboring nodes of those trees. As the second tree �ltering is based

on the pruning strategy, it is equivalent to remove some blobs around minima or

maxima of the graph (GT , FA). As a consequence, the second tree of (GT ′ , FA)

is the same as T T ′, which means that T T1 = T T ′0 . The idempotent second tree

�ltering yields: T T ′1 = T T ′0 ⇒ T ′1 = T ′0 , so ψs(ψs(f)) = ψs(f) holds.

The preservation of the blobs based on the use of extinction value is an example

of an idempotent second tree �ltering. The blobs of the minima or maxima are

preserved, so the extinction values for the minima or maxima of (GT ′ , FA) are

still higher than the given value. Hence the blobs will remain with any additional

�ltering.

3.4.5 Morphological shapings

Unlike the shape-based upper or lower leveling, which deals only with bright or

dark shapes, we introduce in this section a second type of novel connected operators

which process both bright and dark shapes at the same time.

Proposition 5 If T is a self-dual representation, i.e., a topographic map, and A is

a non-increasing attribute, the operator ψs given by the shape-based morphology is

not a leveling.

Proof: Since the shape attribute A is non-increasing, and the shape-based mor-

phology yields a T ′ which is not a pruning of T . So there could exist a pair of
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neighboring vertices (x, y), such that Nx ⊂ Ny, and Ny is removed while Nx is

preserved. The nodes Nx and Ny denote the smallest shapes that contain respec-

tively x and y. Let Nz be the lowest preserved ancestor of Ny. Then we have

ψs(f)(x) = f(x), ψs(f)(y) = f(z). However, as the tree T is the topographic map,

the order of the gray level of a node and any of its ancestor is not monotonous a

priori. So it is possible that f(z) < f(x) and f(z) < f(y). In this case, we have

ψs(f)(x) > ψs(f)(y), f(x) ≥ ψs(f)(x) and ψs(f)(y) < f(y). It is contradictory

with the de�nition of leveling (see Eq (7)).

De�nition 9 If T is a topographic map, the connected operator de�ned by the shape-

based morphology is called a morphological shaping denoted by S.

The name �shaping� comes from the fact that such operator acts by removing

some unwanted dark and bright shapes and preserving some desired shapes.

Proposition 6 The morphological shaping S is a self-dual operator.

Proof: Since the tree T is self dual, which means T + representing f has the

same structure as T − representing −f . And the attribute A is shape attribute being

independent to the gray level. So ∀,N+
k ∈ T

+, ∃N−k ∈ T
−, such that N+

k ⇔ N
−
k

in the sense that the two nodes represent the same connected component and so

A+(N+
k ) = A−(N−k ). In consequence, the graph (GT + ,A+) is equal to the graph

(GT − ,A−). Then we have T T + = T T − ⇒ T ′+ = T ′− and f ′ = −f ′, which means

S(−f) = −S(f). So the shaping S is a self-dual operator.

To make the self dual shapings S idempotent, the �rst condition is T1 = T ′0 .
However, this requirement is not trivial due to the un�xed order of gray level of the

neighboring nodes on the topographic maps T . For any node Nk ∈ T , it is given by

the holes �lling of connected components either from upper level sets (see Eq (2.4)),

or from lower level sets (see Eq (2.7)). Let us denote this nature of Nk respectively
by N k

< or N k
>.

Proposition 7 Let T be a topographic map, for each preserved node Nk of T ′, if
f ′(Nk) < f ′(parent′(Nk)) holds for Nk being N k

<, and f ′(Nk) > f ′(parent′(Nk))
holds for Nk being N k

>, then the tree T1 constructed from f ′ is equal to T ′.

Proof: Thresholding the reconstructed image f ′ by Eq (2.4) and Eq (2.7)

yields some shapes which can be also found in T ′. This correspondence is guar-

anteed by the condition ∀N k
< ∈ T ′, f ′(N k

<) < f ′(parent′(N k
<)) and ∀N k

> ∈
T ′, f ′(N k

>) > f ′(parent′(N k
>)). According to the de�nition of the topographic

map [Monasse 2000b], the inclusion relationship between those shapes yields a

unique tree structure, which is equal to T ′.
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Proposition 8 If the second tree �ltering T T is idempotent and the nature of the

preserved nodes does not change, then the shaping S is idempotent.

Proof: See Proposition 7 and the proof of proposition 4.

3.5 Object detection/segmentation

3.5.1 Main idea: local minima correspond to meaningful objects

The tree-based shape space provides a tremendously reduced searching space for

object detection and segmentation, and it is a multi-scale representation. All these

motivate us to perform object detection and segmentation tasks using that space.

The work of Vilaplana [Vilaplana 2008] shortly reviewed in Section 2.6.2.6 is a such

instance.

Suppose that for a given image, we compute a shape space given by one of the

tree-based image representations T presented in Section 2.3, such that the inter-

esting objects that one would like to detect are represented by some nodes in that

tree T . The question is how to retrieve those interesting objects. Similar with

the �ltering tasks, we could assign an attribute function Ao to each node. For the

purpose of object detection/segmentation tasks, the attribute function Ao can be

some measurement that characterizing the importance/meaningfulness of the region

represented by a node N , such as the meaningfulness of the boundary ∂N proposed

in [Cao 2005] by the number of false alarms (NFA), the average of gradient's mag-

nitude along the boundary (see Eq (3.8)), or the compactness. If the underlying

tree is created by means of region merging algorithms (e.g., BPT), the attribute

Ao could also be some assessment that show the reluctancy of a merge resulting

that node N . If the form, the color, or the position of the interesting objects to be

detected are are known a priori, the attribute Ao can also be some speci�c designed

assessment measuring how much a node �ts the a priori knowledge.

The choice of the tree representation and the design of attribute function Ao
as well as their computation are kind of preparation work, based on which the

decision of objects detection is made. Once these information is available, the object

detection/segmentation task is achieved by objects spotting in the shape space (i.e.,

searching space). The most trivial spotting strategy is to spot the �most likely�

one. It is useful if there is only one interesting object in the image. However, in

most cases, the number of interesting objects is unknown, and is usually more than

one. In this case, one possibility is to �rst of all spot the �most likely� node N ∗1
among all the regions in the shape space, then disable all the nodes belonging to

the branches that contains N ∗1 (i.e., the descendants of the node N ∗1 as well as the
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Figure 3.8: Object spotting by repeating the process of selecting the �most likely�

node N ∗i and disabling the ancestors and descendants of node N ∗i . Blue values are
corresponding attribute value Ao. The three nodes represented by red circles are

the detected objects, where N ∗1 is �rstly spotted, then N ∗2 and N ∗3 . Note that the
green node N13 is more meaningful than N11, but it is not spotted.

ancestors of N1). Then retrieve a second �most likely� node N ∗2 among the rest

regions in the shape space, and disable again its relative nodes (i.e., its descendants

and its ancestors). This �most likely� node spotting and the descendants as well

as the ancestors disabling process is repeated until all the nodes are disabled. In

consequence, a set of nodes {N ∗i , | i = 1, . . . , n} will be detected, where the number
of detected objects is decided by the algorithm. A such objects spotting process

is depicted in Figure 3.8. This spotting strategy might give interesting results in

some cases, but it ignore the fact that several interesting objects may be present in

a same branch of T , which means one is included in another. For example the node

N06 and node N13 in Figure 3.8.

The notion of �most likely� is usually modeled by the extremum of the attribute

function Ao. Following this idea, we propose to spot the local extrema of the

attribute function A0 as interesting objects. For the sake of simplicity, we propose

to use the local minima, if it is the local maxima of Ao which are interesting, then

use 1/Ao so that the local maxima become local minima. Using this strategy, the

regions that are represented by nodes in the same branch can be spotted meanwhile.

For instance, in Figure 3.8, the three local minima of attribute function Ao in the

shape space are respectively N06, N13, and N14, where nodes N06 and N13 are in

the same branch.
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Figure 3.9: (a): Evolution of two attribute functions Ao along a branch starting

from a leaf (left side of Axis X) to the root (right side of Axis X). These two at-

tribute functions Ao are both based on the meaningfulness of the region boundaries:

snake energy [Kass 1988] is depicted in green, and context-based energy estima-

tor [Xu 2012] (see also Chapter 7) is in blue. (b) and (c): the boundaries of two

regions corresponding to signi�cant energy minima in the shape space given by the

topographic map.

3.5.2 Problem: many meaningless local minima

The idea of spotting local minima in the shape space as meaningful objects is in spirit

similar with the principle of MSER discussed in Section 2.6.2.1 and Section 3.3. As

same as the stability function Aq of Eq (3.2), there are usually many local minima

of the attribute function Ao, two examples of the attribute function Ao based on

the meaningfulness of the region boundaries are depicted in Figure 3.9. Many of

the local minima correspond actually to meaningless objects (e.g., the local minima

between the two signi�cant minima (b) and (c), as well as the local minima at the

beginning and the end in Figure 3.9), some local minima represent some regions

that are very similar, and only a representative one should be detected (e.g., several

local minima around (b) and (c)).

3.5.3 Connected �ltering in shape spaces

It is rather di�cult to design a perfect attribute function Ao in the sense that all its

local minima correspond to meaningful objects. Usually an attribute function Ao
having many local minima is obtained, and only those signi�cant minima correspond

to the interesting objects to be spotted. We need to �lter the meaningless local
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Figure 3.10: Tree pruning based connected �ltering applied in the shape space.

The �rst tree-based image representation along with the attribute function Ao is

seen as an image fAo de�ned subordinated to the shape space. The second tree

representation build from the image of attribute fAo is a Min-tree Tm.

minima in the shape space. This could be achieved by applying a connected �lter

to the tree-based shape space seen as a nodes weighted graph. In fact the attribute

function Ao can be seen as an image de�ned on the space of shapes given by a tree

representation fAo : N → R. Then apply a classical tree-based connected �lter on

the image fAo . The underlying tree of this connected �ltering process is the Min-tree

representation Tm, a pruning of this Min-tree is well know as a local minima killer,

then from the pruned Min-tree T ′m, we can reconstruct a �ltered attribute function

A′o of which the minima correspond to the meaningfully interesting objects. Many

meaningless local minima of Ao are thus �ltered. Note that the local minima of

A′o are usually �at zones of the shape space, and a �at zone of local minima might

contain several local minima of Ao which correspond to several meaningful objects

being very similar. We propose to select the region having the smallest Ao as

the representative one for that �at zone of local minima. An example is given in

Figure 3.11. This connected �ltering process applied in the shape space is depicted

in Figure 3.10, which is equivalent to �rst of all transform a given image f to an

image of attribute function fAo (the preparation work discussed in Section 3.5.1),

then followed by a classical tree pruning based connected �lter. This scheme is

equivalent to discard the last image restitution step and change the way of tree

restitution step in the framework of shape-based morphology depicted in Figure 3.2.

By augmenting the pruning force, more and more local minima of Ao will be �l-
tered or absorbed by the close local minima having a smaller attribute value (the case

of �at zone of local minima in �ltered attribute function A′o). This �ltering force can
be measured by the notion of extinction value (see Section 3.2.3 and [Vachier 1995])
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Figure 3.11: An example of the object detection scheme by spotting local minima

of an attribute function Ao as meaningful objects. The underlying tree represen-

tation is the topographic map, and Ao is the context-based energy estimator (see

Chapter 7). Filled circles: local minima; Colorized �lled circles: resistant local min-

ima after connected �ltering in the shape space. Top right: detected meaningful

objects surrounded by the colorized contour and a hierarchy of object detection re-

sult; Bottom: Evolution of attribute Ao and �ltered attribute A′o along the branch

surrounded by dashed contours in the tree.

de�ned for those local minima. Consequently, a soft object detection result can be

obtained through a hierarchy using the extinction value. This idea will be detailed

in Section 3.6.

An example of such described method for object detection/segmentation is il-

lustrated in Figure 3.11. In this example, the underlying tree representation is the

topographic map. The attribute function Ao is the context-based energy estimator

which will be detailed in Chapter 7. The �lled circles represent the local minima

of Ao in the topographic map, and the colorized ones correspond to the four mean-

ingful objects in the image whose boundaries are colorized with the corresponding

color in the output result. The local minima represented by the black �lled circles

will be �ltered by the connected �ltering in the shape space. A hierarchy of object

detection represented by a saliency map is also depicted in the output of this object

detection scheme.
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3.6 Transformation of hierarchy

By expanding the idea of the scheme of object detection through the framework of

shape-based morphology, when we increase the �ltering force in the shape space,

the minima disappear one by one, so less and less local minima are spotted as

interesting objects. In this sense, each local minimum has a certain possibility to

be identi�ed as interesting object. This possibility reveals the meaningfulness of

that object represented by a local minimum. As discussed in Section 3.2.3 and in

Section 3.5.3, this meaningfulness is measured by the extinction value de�ned on the

local minima. But how to represent the extinction values de�ned for those nodes

being local minima in a shape space is not straightforward. In fact, this question

leads to a more general question: how to better visualize and better understand

a tree-based shape space. As discussed in Section 2.4.1, a tree-based shape space

ST is an equivalent image representation, it is a multi-scale representation, and

an image is easier to interpret through the tree-based shape space ST . ST can

be seen as an intermediary level representation. But how can we perceive these

advantages directly in the same way as one observe for example a 2D image f itself.

An example is depicted in Section 9.5 through an e�cient algorithm of disjoint level

lines selection, from a simpli�ed image f ′ reconstructed from these disjoint level

lines, the main structure of topographic map (i.e., tree structure yielded by all the

level lines presented in image) can be easily perceived. This method can be extended

to other tree representations. But still the attribute function A characterizing some

interesting feature of the regions in the shape space ST is not considered. Whereas,

the intensity value of each point in the space of image could be easily observed

through the image f itself.

In this section, we will �rst introduce how to better perceive a tree-based shape

space as well as its associated attribute function A. This is achieved by �rst of all

locating a set of important nodes decided by the attribute function characterizing

some interesting region feature, and by weighting the attribute function A instead

of the intensity value to a new created image that we call attribute mapMA. From
this attribute map, the most important information carried by the shape space can

be easily perceived. Then we will detail a special case of the attribute map that

represents the extinction value of the local minima of a shape space. It will be shown

that it is in fact a kind of new saliency map which is equivalent to a hierarchy of

image segmentation.
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Figure 3.12: Materialization of the points in a 2D image with 0-faces (blue disks),

1-faces (green strips), and 2-faces (red squares). The original points of the image is

the 2-faces, the boundaries are materialized with 0-faces and 1-faces. The contour

of the purple region is composed of black 1-faces and 0-faces.

3.6.1 Attribute map

We distinguish two types of attribute map depending on weighting the attribute

function A to the regions itself or to the region boundaries. Note that a region

boundary is composed of a set of elements that lie in between points, the elements

are materialized by 1-faces and 0-faces for a 2D image as depicted in Figure 3.12.

For instance, the contour of the purple region having three pixels is composed of

the black 1-faces and black 0-faces.

• Attribute map M•A de�ned on regions

The idea of attribute map M•A de�ned on regions is to weight the attribute

function A to each point in the space of image. More speci�cally:

1) Initialize the attribute map M•A with 0, the size of M•A is the same as the

original image.

2) For each point p ∈ V , �nd the set of connected components of the tree T
that contain this point p, it is a �nite set of regions starting from the �rst

node Np including p to the root node of the tree T . M•A(p) is the attribute of

the representative region among the set of ancestor nodes. The representative

region can be obtained by some means such as, selection the most meaningful

one, or the closest (i.e., lowest) meaningful one.
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Such de�ned attribute mapM•A is useful for better visualize the tree structure

as well as the attribute function. It is also useful in some real applications, such as

the scale map of local scale measure for remote sensing images proposed by Luo et

al. [Luo 2009], where the representative node is selected by the closest meaningful

region subordinated to some criterions, and for instance, if the attribute function

is a learned hierarchical features [Farabet 2013], the representative node could be

selected using their proposed automatic node retrieval technique. The produced

attribute mapM•A can be used for �nal scene labeling in their method.

This attribute mapM•A is somehow similar in spirit with the work of di�erential

are pro�les proposed by Ouzounis et al. [Ouzounis 2012a], where for each point p, a

vector representing the di�erential area along the set of regions from Np to the root
is used instead of a scalar value being the attribute of some selected node.

• Attribute map M◦A de�ned on boundaries

The attribute mapM◦A de�ned on boundaries is to weight the attribute function

A to each 1-face and 0-face composing the region boundaries. More precisely:

1) Initialize the attribute mapM◦A with 0, note that the size ofM◦A is doubled

compared with the original image f .

2) For each 1-face e ∈ E (an element lying in between a pair of neighboring

points (x, y)) in the image, �nd the set of connected components on the tree

T whose boundary contains e. Note that the set of connected components

are represented by one (or two) set(s) of successive nodes starting respectively

from the �rst node Nx, Ny that contains respectively x, y. if Nx∩Ny 6= ∅, then
either Nx ⊆ Ny or Ny ⊆ Nx. Suppose that the former inclusion holds. Then

the set of nodes are {Nx, . . . ,Ny(not included)}. Whereas if Nx ∩ Ny = ∅,
in such a case, let Na be the lowest common ancestor of Nx and Ny. Then

Na is also the �rst node such that x ∈ Na and y ∈ Na. The set of nodes are
{Nx, . . . ,Na(not included)} ∪ {Ny, . . . ,Na(not included)}. Note also that the
set of connected components might be empty in the case of Nx = Ny. M◦A(e)

is decided by the smallest attribute Am (suppose that smaller attribute A(N )

is, the region represented by N is more meaningful) of the set of connected

components. Then M◦A(e) is given by the reverse of Am, such as M◦A(e) =

1/Am. Besides, if Nx = Ny which implies that the set of regions is empty,

thenM◦A(e) = 0.

3) For each 0-face o in the image,M◦A(o) = max{M◦A(e) | o is neighboring to e}.
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The attribute map M◦A de�ned on the region boundaries is inspired from the

saliency map [Najman 1996] obtained by stacking a family of hierarchical contours.

In fact, an attribute mapM◦A represents a hierarchy of segmentation, each threshold

ofM◦A gives a partition of the image. Compared with the attribute mapM•A de�ned

on the regions, it is more adapted to handle the nested meaningful regions thanks

to the following property:

N1 ⊂ N2 ; ∂N1 ⊂ ∂N2, (3.9)

in fact, if N1 ⊂ N2, the boundaries of their represented regions ∂N1 and ∂N2 can

be totally disjoint.

The attribute map M◦A de�ned on region boundaries either transforms a mor-

phological tree (i.e., Min-tree, Max-tree, or topographic map) to a hierarchy of

segmentation, or transforms a hierarchy of segmentation to another one. They are

both guided by the attribute function A which is computed on a set of multi-scale

regions that are not too local. Which might be more interesting than the initial one.

However, as depicted in Figure 3.7 and Figure 3.9, around the meaningful nodes,

many close nodes are also relative meaningful, so there are lots of close bound-

aries having similar meaningfulness in the attribute mapM◦A, which make the real

meaningful ones not so visible. This e�ect will be illustrated in Chapter 5.

3.6.2 Saliency map using extinction value

In order to enhance the visibility of the meaningful regions, we propose a variant of

the attribute map de�ned on region boundaries: the saliency map using extinction

values (see Section 3.2.3)ME . Recall that the extinction value E is de�ned on the

local minima, for a given minimummi of an attribute function A in the shape space,

E(mi) is de�ned as the maximal morphological �ltering force for which mi is still a

local minimum (the representative one in the case of a �at zone of local minima) of

the �ltered attribute function A′. In fact, this saliency map using extinction value

is inspired from the scheme of object detection, for which the basic idea is that

the meaningful objects in the image correspond to local minima of some attribute

function Ao characterizing the meaningfulness of each node. Consequently, we can

discard the nodes which are not local minima of Ao in the shape space, because

the important information is carried by the local minimal nodes. Moreover, the

importance of those local minima can be measured by their extinction values E . The
saliency map based on the extinction valueME is de�ned by weight the extinction

value E instead of the attribute functionA to region boundaries. More precisely,ME
is obtained by changing the step 2) in the scheme of attribute mapM◦A computation:
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Figure 3.13: An example of hierarchy transformation through the saliency map using

extinction value ME . (a) Original image; (b) Original hierarchy H, blue numbers

are the attribute values; (c) Saliency map using extinction valueME , the boundary
of region A∪B is weighted with 9, greater than the weight (being 6) of boundary of

C, they are given by respectively the extinction value of the minimum A∪B and of

the minimum D; (d) Dendrogram ofME , and a cut of this dendrogram is given by

the red dashed line.

2) The value for each element e of the saliency map using extinction valueME(e)
is given by the maximal extinction value of the minima among the set(s) of

nodes representing the set(s) of nested components having e as an element

of its boundary. Certainly, if there is no minimum among the set of nodes,

ME(e) = 0.

Each threshold of this map ME represents an object detection/segmentation

result. This saliency map using extinction valueME represents a hierarchy of seg-

mentation computed from a tree-based shape space given by either a morphological

tree (i.e., Min-tree, Max-tree or topographic map) or a hierarchy of segmentation.

The computation is guided by the attribute function A. Note that a segmentation

given by a cut of ME might be di�erent from any cut of the original shape space

ST . For instance, in Figure 3.13, the region C merge with the union of regions A

and region B in the original hierarchy H depicted in Figure 3.13 (b), the union of

region C and region D will never be a single region of a partition given by any cut of

the original hierarchy H. However, the union of region C and region D is a possible

single region of a partition given by thresholding the saliency map using extinction

valueME as depicted in Figure 3.13 (c). Indeed, the partition given by the cut of

ME depicted in Figure 3.13 is composed by two regions: region A∪B and region

C∪D.
Some applications of the saliency map using extinction value will be depicted in

Chapter 5 and Chapter 8.
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3.7 Conclusion

In this chapter, we have presented the main proposition in this thesis: the con-

cept of shape-based morphology framework. It is a versatile framework that deals

with region-based image representations. Such representations are used in a large

number of applications. Our framework is inspired from the connected operators.

We propose to apply them on the tree-based shape space underlying any tree-based

image representation. The framework of shape-based morphology makes use of the

complete tree structure, i.e., the inclusion relationship between neighboring regions

present in the tree. Such information can be seen as a regional context whose shape

is adapted to the image contents. That helps to take a more robust �ltering deci-

sion. We have shown that this framework is more general than the classical existing

methods. It can be used for three types of processing tasks. 1) For shape �lter-

ing, we have shown that it encompasses the classical pruning- and threshold-based

strategies. Two novel classes of connected operators are introduced. Namely the

shape-based lower/upper levelings, and the shapings. 2) This framework can be ap-

plied to object detection/segmentation, and a soft object detection/segmentation is

obtained via a saliency map representation with no additional cost. 3) We have also

shown that this framework is useful to compute a saliency map representing a hi-

erarchical image segmentation from any tree-based image representation. All these

aspects demonstrate the high potential of the proposed framework of shape-based

morphology.
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Chapter 4

Tree-Based Morse Regions

(TBMR)

This chapter introduces a topological approach to local invariant feature detection

motivated by Morse theory. We use the critical points of the graph of the intensity

image, revealing directly the topology information as initial �interest� points, and

then associate to each point a local patch selected from the shape space. The

critical points coincide with the leaves and nodes having bifurcation on the Max-

tree and Min-tree. For each critical point, we �nally extract the largest region that

contains it and is topologically equivalent in its tree. We call such regions the Tree-

Based Morse Regions (TBMR). They can be seen as a variant of MSER, which

are contrasted regions. TBMR relies only on topological information and hence

extracts the regions independently of the contrast, which makes it truly contrast

invariant and quasi parameters free. TBMR extraction is fast, having the same

complexity as MSER. Experimentally, TBMR achieves a repeatability on par with

state-of-the-art methods, but obtains a signi�cantly higher number of features. Its

accuracy and robustness are demonstrated by applications to image registration and

3D reconstruction.

4.1 Introduction

Local invariant feature detection [Matas 2002, Tuytelaars 2004, Lindeberg 1998,

Lowe 2004, Schmid 2000, Mikolajczyk 2005, Moreels 2007, Aanæs 2012] is an im-

portant step in a number of applications such as wide baseline matching, object and

image retrieval, tracking, recognition, image registration and 3D reconstruction.

The classical process to obtain the features consists in detecting a speci�c class of

interest points, such as corners, together with an associated scale generally obtained

from a scale-space. Typical examples of such key locations are the local extrema

of the result of di�erence of Gaussians (DoG) applied in scale-space to a series of

smoothed and resampled images. Several crucial invariance properties are required

for using such points in applications, such as invariance to image translation, scaling,

and rotation, to illumination changes or to local geometric distortion.
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(a) Four among 76 used multi-view images.

(b) Incomplete reconstructed 3D facades using DoG.

(c) The four facades of the 3D reconstruction using TBMR.

Figure 4.1: An example of 3D reconstruction using local invariant features. Top:

4 among 76 used multi-view images. Four facades of the PMVS [Furukawa 2010]

densi�ed sparse 3D reconstruction from the SfM pipeline [Moulon 2012] using DoG

(middle: almost no points on the front roof, and the back facade of the building is

missing.) and the proposed TBMR (down: the whole tour is reconstructed ).
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In this Chapter, we propose a topological approach to extract the local invariant

features. We �rst extract some initial �critical� points, based on ideas from the

Morse theory [Milnor 1963]: minima, maxima and saddle points. More precisely,

following [Caselles 2009], we propose to choose critical nodes in the two trees (called

Min-tree and Max-tree [Salembier 1998]) made by the connected components of

lower and upper level sets: those critical nodes are the leaves and the nodes having

several children. For each critical node a scale is selected. Instead of using a scale-

space, the scale comes from the tree-based shape space: we associate to a critical

node Nc the largest region containing it and topologically equivalent in its tree. We

call our method Tree-Based Morse Regions (TBMR).

TBMR has several main advantages: as it uses only topological information, it is

independent on the image contrast. It is also covariant to continuous (topological)

transformations such as translation, scaling or rotation. As demonstrated in this

Chapter, it is also robust to local geometric distortion. Furthermore, it is essentially

parameter-free: only two non-signi�cant parameters are applied, so that we ignore

regions that are either too small or too large. And last, but not the least, e�-

cient algorithms with a quasi-linear or a linear complexity are available to compute

it [Salembier 1998, Najman 2006, Nistér 2008].

In Section 4.4.1, some qualitative results compared with other state-of-the-art

methods will be illustrated to show the better distribution of TBMR. Quantita-

tive evaluation, based on the image coverage measurement in Section 4.4.2, con-

�rms the qualitative evaluation. Tests in Section 4.4.3 demonstrate that TBMR

achieves repeatability score comparable to other state-of-the-art methods with a

signi�cantly higher number of correspondences. We evaluate TBMR on two ap-

plications in which many matched features are required: image registration (Sec-

tion 4.4.4) and 3D reconstruction (Section 4.4.5). For these two applications, and

as illustrated in Figure 4.1, results attest that TBMR improves over the commonly

used DoG [Lowe 1999].

4.2 Related work

We focus on two detector classes, those based on scale-space and those based on

MSER. For a complete review of invariant feature detectors, the interested reader

is referred to Tuytelaars and Mikolajczyk's survey [Tuytelaars 2008].

4.2.1 TBMR versus scale-space feature detection

There exists a variety of local invariant feature detectors having relatively

good performance, as assessed by several evaluation frameworks [Schmid 2000,
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Mikolajczyk 2005, Moreels 2007, Aanæs 2012]. The �rst type is based on scale-

space. Harris corners, Hessian based detectors and the Di�erence of Gaussians

(DoG) are such instances. The Harris corner detector [Harris 1988] �nds the extrema

of a corner measure based on the second moment matrix at some �xed scale. A scale-

adapted Harris corner detector and its extension Harris-Laplace [Mikolajczyk 2004]

with scale selection �nd extrema of the Laplacian of Gaussian (LoG) �lter. The Hes-

sian detector [Lindeberg 1998] extracts the extrema of a feature measure based on

the Hessian matrix. Its extension Hessian-Laplace [Mikolajczyk 2004] uses the same

scale selection as Harris-Laplace. The a�ne versions of both Harris and Hessian are

based on the a�ne shape estimation using the second moment matrix. Harris based

detectors tend to extract corner-like structures, while Hessian based detectors tend

to �nd blobs and ridges. DoG [Lowe 1999] is similar to the Hessian detector in the

sense that it approximates LoG by the trace of the Hessian matrix. DoG tends to

extract points at isotropic blob structures.

In spirit, TMBR is very similar to these kinds of approaches. TBMR detects

critical points (i.e., extrema and saddle points), but it does not rely on a scale-space.

As described in section 4.3, it uses the shape space given by the Min-tree and Max-

tree representations, as discussed in Section 2.4, this space having the main property

of scale-space, namely the causality principle [Koenderink 1984].

4.2.2 TBMR versus MSER

As discussed in Section 3.3, although its original de�nition is quite di�erent, the

Maximally Stable Extremal Regions (MSER) [Matas 2002] is easily understand-

able using Min-tree and Max-Tree. As shown in [Donoser 2006] and Section 3.3,

MSER extracts the regions (nodes) that correspond to local minima of a stability

function along the path to the root of the tree. The stability function of a given

node is given by the di�erence between the area of some (grand-)parent and some

(grand-)child, divided by the area of the node itself. It is de�ned by Eq (3.2) It

is reported [Mikolajczyk 2005] that MSER achieves state-of-the-art repeatabilities

and regions accuracies. It is also very e�cient. However, the number of detected

features are comparatively small which limits its ability for some applications like

image registration and 3D reconstruction. Perdoch et al. [Perdoch 2007] propose

the Stable A�ne Frame (SAF) for which only local stability is required. Many more

features are obtained with a comparable repeatability score. However, it is much

slower than MSER.

TBMR can be seen as a variant of MSER, both relying on Min/Max-tree rep-

resentations. The most fundamental di�erence is related to illumination change,

a very common e�ect in natural images that is reported as an unsolved problem
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in the literature [Aanæs 2012]. Indeed, the MSER stability function depends on a

parameter ∆ that �xes the intensity level di�erence of the (grand-)parent and of the

(grand-)child actually used for the ratio. That prevents a true invariance of MSER

to illumination change. By contrast, TBMR, being purely topological, is truly in-

variant to a�ne illumination change. A less fundamental di�erence concerns the

number of parameters of MSER. As TBMR, MSER uses two parameters to remove

too large and too small regions. But MSER also requires in the stability function,

on top of the parameter ∆ we just described, a threshold to remove unstable re-

gions, and another parameter to group together detected regions that are similar

in terms of position and size. Such parameters are not needed in TBMR. A last

minor di�erence deals with the de�nition of MSER. Indeed, the stability function is

not clearly de�ned in the presence of bifurcations, i.e. when a node has more than

one child. That raises a di�culty in trying to reproduce some results: for example,

there exist two public implementations of MSER, one from VLFeat [Vedaldi 2008],

the other from OpenCV, each one of them using a similar but di�erent stability

function. The topological de�nition of TBMR allows for a perfect reproducibility,

whatever the chosen algorithm implementation.

4.3 TBMR extraction

In this section, we describe our proposed topology-based local invariant features

detector called the Tree-Based Morse Regions (TBMR). The TBMRs are extracted

from the shape space built from the image by the Max-tree TM and Min-tree Tm.
In Section 4.3.1, we will show how to extract those �interest� regions from the shape

space based on Morse theory [Milnor 1963].

4.3.1 Feature extraction based on Morse theory and shape space

Properties of the tree-based image representation make the shape space (see Sec-

tion 2.4) very appropriate for local invariant features detection. MSER extracts the

�stable� regions using a stability function. Doing so, it does not preserve properties

such as the contrast invariance. In order to preserve all the invariance of the tree,

we propose a topological approach that detects �interest� regions based on Morse

theory [Milnor 1963]. Recall that a Morse function is a smooth function f whose

critical points (i.e., points where ∇f = 0) are isolated. Critical points are minima,

maxima and saddle points of f . The topology of f is directly linked to the analysis

of those critical points. However, the Morse function is not an adequate model for

an image, as it prevents the existence of plateaux for example. A consequence is

that we will deal with regional extrema and saddle points with regional extrema and
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Figure 4.2: A synthetic image and the corresponding Min-tree (middle) and Max-

tree (right) representation. The critical nodes are represented by red circles: (1)

nodes having more than one child, and (2) leave-nodes. The �lled nodes are the

TBMRs.

saddle regions instead of isolated points.

The use of Morse theory is not new in computer vision: see, for example,

the contour tree [Kweon 1994, Van Kreveld 1997] and the Reeb graph [Reeb 1946,

Takahashi 1995] for shape matching. Here, we use the Max- and Min-trees to lo-

cate the critical points. To do that, we rely on the following property, that can be

deduced from Caselles and Monasse [Caselles 2009, Chapter 4]:

Proposition 9 The critical points of a Morse function are the extrema of f , cor-

responding to the leaves of the Max-tree TM and of the Min-tree Tm of f , and the

saddle points of f , corresponding to nodes of these trees with several children.

We thus call critical nodes the leaves and the nodes of TM and Tm with more than

one child. Having critical nodes rather than critical points allows us to deal with

any function, even if it is not a Morse one. In Fig. 4.2, critical nodes are highlighted

with a red circle.

The next stage is to associate a scale to each critical node. A critical node

corresponds to a change of topology in its tree: either an apparition (leaves corre-

sponding to extrema) or a merge (nodes with several children). Thus, on a branch

of the tree between two critical nodes, there is no topological change in the tree.

In other words, a node that is not critical is topologically equivalent to the �rst

critical node we encounter going from the node to the leaves of the tree. Conversely,

and as a node corresponds to a region of the image, a critical region/node Nc is
topologically equivalent to any region/node that contains Nc but no other disjoint

critical region/node. A good �scale� choice for representing a critical region/node is

thus the largest region/node to which it is topologically equivalent. We call such a

region a Tree-based Morse Region (TBMR). A reason to take the largest topologi-
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Figure 4.3: An example of TBMR extraction. Left: Front view (top) and 30◦

view (down) of �Gra�ti� scene [Mikolajczyk 2005]. Middle: Evolution of number

of children starting from a leaf to the root and some extracted TBMRs along the

branch; Right: �rst TBMR containing the TBMRs illustrated in middle column

(though they are actually too large).

cally equivalent node in the tree is that we want as much context as reasonable to

encode the region.

In practice, we do not consider TBMRs that are either too small or too big. This

small regions discarding is performed before analyzing the tree structure, which

means the small regions do not contribute to the topological changes of the tree

structure. Discarding them eliminates also some noise without modifying other

components. Also, regions that meet the image border are considered truncated

and we ignore them. In Fig. 4.2, TBMRs are drawn with a red disk. The evolution

of the number of children of a node, starting from a leaf to the root is illustrated in

Figure 4.3.

As in most shape-space based methods, we compute the centroids of the selected

regions as the �nal feature points. The ellipse with the same �rst and second mo-

ments as the detected region is then used as the local patch upon which a descriptor

is computed.

4.4 Results

Qualitative and quantitative comparison of the distribution of TBMR with other

popular local feature detectors are illustrated in Section 4.4.1 and Section 4.4.2. In
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section 4.4.3, the repeatability assessment of the TBMR is evaluated using the frame-

work of Mikolajczyk et al. [Mikolajczyk 2005]. Two applications using local invariant

features are presented in sections 4.4.4 and 4.4.5 to compare the TBMR with other

widely used detectors. The application to image registration in Section 4.4.4 high-

lights the accuracy and the robustness of the TBMR. The experiments are conducted

on the Stanford Mobile Visual Search (SMVS) Data Set [Chandrasekhar 2011]. In

Section 4.4.5, the application to 3D reconstruction using structure from motion is

�rst tested on the dataset of Strecha et al. [Strecha 2008], providing the ground

truth of the camera positions. The baseline error and angular error measurements

reveal the accuracy of the TBMR. Then the 3D reconstruction experiments are

conducted on some real images taken in a sunny day around some structure. The

structure from motion succeeds in reconstructing a complete 3D model using the

TBMR, whereas only part of the scenes are reconstructed for the 3D model by using

other detectors. In all experiments, the parameters of the corresponding method

are set with the recommended values.

4.4.1 Qualitative features comparison

We �rst compare the TBMR with the state-of-the-art local feature detectors by

visualize the distribution of the keypoints obtained with each method. The methods

that we tested are Harris-A�ne, Hessian-A�ne, DoG, DoG octave-1, MSER. For

the shape-space based methods: MSER and TBMR, the centroid of the extracted

regions is considered as the detected keypoints. The qualitative comparison are

conducted on two images taken against the sunlight in a sunny day. The distribution

of the keypoints extracted with di�erent methods on the two tested images are

illustrated respectively in Figure 4.4 and in Figure 4.5. From these two �gures,

the same assessment is observed: MSER detects few points, which explicates the

failure of a 3D reconstruction using MSER in the example shown in Figure 4.1;

Harris-A�ne, Hessian-A�ne, and DoG all extract a reasonable number of points,

but few points on the real object of the scene, which make them fail to reconstruct

the 3D structure correctly in Figure 4.1. By using the option octave-1 for DoG, a

signi�cantly higher number of points than DoG without this option are detected,

but the additional points are mostly distributed where there were already many

points, not on the real object. However, the proposed TBMR has a reasonable

number of keypoints, and they are distributed more uniformly over the image, which

contributes the main reason of its success of having a correct 3D reconstruction in

Figure 4.1.
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(a) (a) Harris-A�ne. (b) (b) Hessian-A�ne.

(c) (c) DoG. (d) (d) DoG octave-1.

(e) MSER. (f) TBMR.

Figure 4.4: Qualitative comparison of TBMR with other widely used local feature

detectors applied on an image taken against the sunlight (used in Figure 4.1). Yellow

points in the image are the detected keypoints.
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(a) (a) Harris-A�ne. (b) (b) Hessian-A�ne.

(c) (c) DoG. (d) (d) DoG octave-1.

(e) MSER. (f) TBMR.

Figure 4.5: Qualitative comparison of TBMR with other widely used local feature

detectors applied on an image taken against the sunlight. Yellow points in the image

are the detected keypoints.



4.4. Results 101

4.4.2 Image coverage evaluation

In order to assess the uniformity of those keypoint distributions obtained with dif-

ferent methods, we �rst measure the distribution of keypoints along the two image

dimensions, as well as the number of extracted points for a set of images taken

around some scene objects. In Fig. 4.6, we show the distribution of keypoints posi-

tion along the horizontal dimension for the images taken around the objects of scene

presented respectively in Fig. 4.5, Fig. 4.17, and Fig. 4.18. These images are taken to

make the object of interest presented in the middle (horizontally) of the scene. The

distributions shown in Fig. 4.6 are smoothed by taking the average inside a horizon-

tal window (size is set to 21). As shown in this �gure, MSER extracts few points;

TBMR has a number of points comparable with Harris-A�ne, Hessian-A�ne, and

DoG without option octave −1; DoG with the option octave −1 has many more

points. However, TBMR has the largest part of keypoints that cover the objects of

interest in those scenes, which contributes to its success in Fig. 4.17 and 4.18.

We also evaluate how well the keypoints cover the image. First, we propose to

dilate the extracted keypoints by a 2D window centered at each point with a certain

size (e.g., 31). Then we compute the rate of area covered by the dilated region.

Note that for two close keypoints, their dilated regions may have a large part in

common, but the common regions count only once. As shown in Fig. 4.7, MSER

covers a small part of the image because of a few extracted points. TBMR covers

the image better than the others having a comparable or much larger number of

detected points, which con�rms the qualitative observation in Section 4.4.1.

4.4.3 Repeatability evaluation

To assess the performance of the proposed TBMR, we compare it with other a�ne

detectors: Harris-A�ne and Hessian-A�ne, de�ned on the scale-space, and MSER,

de�ned on the shape space.

We repeat the tests of Mikolajczyk et al. [Mikolajczyk 2005]. They evaluate the

repeatability score based on the overlap error ε:

ε(RE1 , RE2) = 1−
RE1 ∩RHT

21E2H21

RE1 ∪RHT
21E2H21

, (4.1)

where RE represents the elliptic region (i.e., local patch of each extracted feature)

de�ned by xTEx ≤ 1, and H21 is the ground truth homography between the test

and reference image. The repeatability score for a pair of images is then de�ned

as the ratio between the number of region-to-region correspondences established

under a certain overlap error (e.g., 40%) and the smaller number of regions in

the compared images. Another evaluated measurement is the absolute number of
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Figure 4.6: Horizontal distribution of the keypoints (left) and number of extracted

keypoints (right), for the multi-view images taken around the objects of scene pre-

sented in respectively Fig. 4.5, Fig. 4.17, and Fig. 4.18 (top to bottom).
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Figure 4.7: Image coverage evaluation by dilating a keypoint with a 2D window

having size 31× 31; Vertical axis represents the average rate of area covered by the

dilated region for multi-view images presented in Fig. 4.5, Fig. 4.17, and Fig. 4.18.

correspondences. A high repeatability score and a large number of correspondences

are normally desired.

Some results applied to the sequences Wall (viewpoint change), Bark (scale

change), Trees (blur), Leuven (light change) [Mikolajczyk 2005] are illustrated in

Figure 4.8. Compared to the scale-space based approaches (i.e., Harris-A�ne and

Hessian-A�ne), the TBMR achieves a competitive repeatability score and a signif-

icantly higher number of correspondences, except for the blur sequence Trees. The

explanation is that the topology of the image is damaged by the blur. For the same

reason, the performance is poor on UBC sequence (not shown here), testing robust-

ness to strong JPEG compression artifacts. Such defects (blur, JPEG artifacts) are

better handled by the scale-space methods. Compared with the MSER which is also

based on the shape space, the TBMR has a comparable repeatability score, but a

signi�cantly higher number of correspondences thanks to the contrast independent

property of TBMR.

Experiments on other datasets (such as the dataset of DTU) that contains more

images will be added.

4.4.4 Image registration

Image registration methods use the local features to establish a correspondence

between a number of interest points (e.g., the centroids of the detected elliptical

regions) in images. These one-to-one correspondences are then used to estimate
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Figure 4.8: Repeatability score (left) and number of correspondences (right) for the

sequences Wall, Bark, Trees, Leuven (top to down).
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the transformation, thereby establishing point-by-point correspondence between the

reference image and the target image. Hence, the accuracy and robustness of the

local features is crucial to the quality of image registration result. There should also

be enough pairs of matched points so that the estimation of the parameters of the

transformation between images is possible.

For these experiments, we use the work of Moisan et al. [Moisan 2012]. It is

based on the Optimized Random Sampling Algorithm (ORSA) proposed by Moisan

and Stival [Moisan 2004], a variant of RANSAC algorithm introducing an a con-

trario criterion [Desolneux 2000] to avoid the �xed thresholds for inlier/outlier dis-

crimination. ORSA is used to estimate the homography registering both images.

When the homography is assessed, a panorama is built by stitching the images

in the coordinate frame of the second image. The experiments are conducted on

the CD-covers and paintings of the Stanford Mobile Visual Search(SMVS) Data

Set [Chandrasekhar 2011]. As both the CD-covers and the paintings are planar

scenes, they are amenable to homography registration. We experimented Harris-

A�ne, Hessian-A�ne, MSER, DoG, and the proposed TBMR to compute point

correspondences between images using the SIFT descriptors of Lowe [Lowe 2004].

The point correspondences is the input of ORSA.

For the images of Figure 4.9, Figure 4.11, and Figure 4.13 Harris-A�ne, Hessian-

A�ne and MSER all fail in estimating the homography due to insu�cient number of

correspondences. And DoG also fails for images in Figure 4.11 and Figure 4.13. In

Figure 4.9, although DoG achieves a homography, the registration result is inaccu-

rate at the top left corner, whereas the TBMR results in a meaningful homography

in all cases. A chessboard mix of the two registered images for Figure 4.9, Fig-

ure 4.11, and Figure 4.13 are given respectively in Figure 4.10, in Figure 4.12, and

in Figure 4.14, from which the qualitative results can be better visualized. Note that

for these image registration examples, there is no ground truth for these images and

�nding a relevant metric for such poor quality images is a challenge in itself, so only

visual inspection is left to the reader's appreciation.

4.4.5 3D reconstruction

Structure from Motion (SfM) is a popular process of estimating a three-dimensional

structures from a sequence of two-dimensional images. The SfM algorithms take

multi-view stereo images along with the internal camera calibration information as

input and yield a sparse 3D point cloud, camera orientations and poses in a common

3D coordinate system. The feature points are used in the phase of model estima-

tions, including homography, fundamental and essential matrices, and camera poses.

These estimations are very crucial to the quality of 3D reconstruction. Therefore,
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DoG registration TBMR registration

Figure 4.9: Homographic registration of a pair of images. Top: reference image (left)

and target image (right); Down: registration results using respectively DoG (left)

and TBMR (right). The result given by the use of DoG with standard parameters

is not as accurate as the one based on TBMR (see the zoomed top left corner).

Harris-A�ne, Hessian-A�ne, MSER with standard parameters all fail in registering

the pair of images.
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(a) Chessboard mix of the two registered images using DoG

(b) Chessboard mix of the two registered images using TBMR

Figure 4.10: Chessboard mix of the two registered images using respectively DoG

for (a) and TBMR for (b).
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Figure 4.11: Homographic registration of a pair of images. Left: reference image.

Middle: target image. Right: registration result using TBMR. All the other tested

detectors using standard parameters do not provide a correct registration.

Figure 4.12: Chessboard mix of the two registered images using TBMR
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Figure 4.13: Homographic registration of a pair of images. Left: reference image;

Middle: target image; Right: registration result using TBMR. All the other tested

detectors using standard parameters do not provide a correct registration.

Figure 4.14: Chessboard mix of the two registered images using TBMR
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the accuracy and robustness of the local invariant features detectors is a de�ning

aspect of the 3D reconstruction result.

To assess the performance of the feature detectors in this application, we use

the software of Moulon et al. [Moulon 2012] which makes use of the a contrario

criterion [Desolneux 2000] instead of globally-�xed thresholds for model estimation

in SfM pipelines. In other respects, their pipeline is similar to the one of the pop-

ular Bundler software [Snavely 2006]: some initial pair of images are selected and

two-view 3D reconstruction performed; other images are then sequentially added,

each time re�ning the 3D scene with bundle adjustment, an iterative optimization

method based on Levenberg-Marquardt algorithm. It is shown in their work that

the adaptive SfM outperforms the state-of-the-art methods with signi�cant preci-

sion improvements. The pipeline may stop prematurely at some point if not enough

point correspondences are found to add further images.

4.4.5.1 Quantitative benchmark

We �rst benchmark the TBMR with Harris-A�ne, Hessian-A�ne, MSER and DoG

on the public dataset of Strecha et al. [Strecha 2008], where the ground truth of

the camera orientations and poses are also available. The SIFT descriptors of

Lowe [Lowe 2004] is again used to establish one-to-one correspondences between

the feature points for each detector. The quality of the 3D reconstruction is tested

in terms of the precision of estimated camera orientations and poses. The baseline

errors and angular errors compared to the ground truth are illustrated in Figure 4.15.

For each sequence, the absence of the curve corresponding to some detectors means

that it fails to calibrate all the cameras, or the baseline and angular errors are too

high compared with others. Harris-A�ne fails or the measurements are too high

for all the sequences. Hessian-A�ne fails or the measurements are too high for �ve

sequences, while MSER works for three sequences. DoG and TBMR succeed for

all the sequences. Compared to Harris-a�ne, Hessian-a�ne, MSER, the TBMR

is more robust and behaves better in terms of baseline errors and angular errors.

Compared to DoG, in most cases (especially for the sequences of Herz-Jesus-P8 and

Castle-P19), the TBMR performs better based on the baseline and angular errors.

In Figure 4.16, we show also the recall rate of good tracks, the ratio between the

amount of �nal maintained tracks, and the number of input tracks found between

the feature points. The absolute number of �nal maintained tracks is presented as

well. The highest recall rate and the largest number of 3D points obtained with the

TBMR also reveal its robustness.
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(a) (a) Herz-Jesus-P8.
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(b) (b) Herz-Jesus-P25.
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(c) (c) Entry-P10.
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(d) (d) Fountain-P11.
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(e) Castle-P19.
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Figure 4.15: Evaluation of camera calibration based on baseline error and angular

error applied on the dataset in [Strecha 2008].
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Figure 4.16: Recall rate (left) of the tracks and the absolute number (right) of �nal

maintained tracks used to yield the sparse 3D points.

4.4.5.2 Qualitative results

We also test the described SfM with di�erent detectors on some other images taken

in a sunny day. Since the SfM produces a sparse 3D points cloud, not a dense 3D

reconstruction, the PMVS software [Furukawa 2010] is used to densify the 3D points.

Note that PMVS uses interest points of DoG and Harris corners to reconstruct

the 3D structures based on the estimated model. Consequently, this may result

in a lack of 3D points in a region (e.g., the surface near the bottom of the 3D

structures on the right side of Figure 4.18 using the TBMR). By integrating the

TBMR in PMVS, we would expect the reconstructed 3D structures to be denser

thanks to its contrast independent property. In Figure 4.17, the DoG detector fails

to reconstruct half of the scene where shadows are present. In Figure 4.18, DoG

detector behaves similarly, whereas TBMR works well in all cases: the complete 3D

structures are reconstructed. Note that Harris-A�ne, Hessian-A�ne and MSER

perform even worse than DoG, so the corresponding results are not presented in

Figures 4.17, 4.18. These examples also con�rm the importance of the invariance to

illumination changes, as pointed out by Aanæs et al. [Aanæs 2012].

4.5 Conclusion

We introduced a topological approach to local feature detection motivated by Morse

theory. We made use of the critical points (i.e., minima, maxima, saddle points) in

images and the shape space given by Max-tree and Min-tree built from the image.

More precisely, we use the critical regions that are the leaves and nodes with bifur-

cation in the Max- and Min-trees. To each critical region, we proposed to associate

the largest region from the shape space that contains it but does not contain any

disjoint critical region. We have shown that the proposed method called TBMR is

truly contrast independent, and quasi parameter free. Besides, the TBMR is fast to

compute with a linear or quasi-linear complexity.
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(a) 4 among 35 used multi-view images

(b) 3D result using DoG (c) 3D result using TBMR

Figure 4.17: Densi�ed 3D reconstruction. (a) Some used images. (b) and (c) are

respectively the left and right side of the reconstructed 3D structures using respec-

tively DoG and TBMR. The use of DoG misses the right side of the scene; the use

of TBMR results in a correct 3D reconstruction; other detectors behave worse than

DoG.
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(a) 4 among 14 used multi-view images.

(b) 3D result using DoG. (c) 3D result using TBMR.

Figure 4.18: Densi�ed 3D reconstruction. (a) Some used images. (b) and (c) are

respectively the left and right side of the reconstructed 3D structures using respec-

tively DoG and TBMR. The use of DoG misses the right side of the scene; the use

of TBMR results in a correct 3D reconstruction; other detectors behave worse than

DoG.
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Experimentally, we showed on standard data [Mikolajczyk 2005] that the devel-

oped TBMR achieves a reasonable repeatability and a signi�cantly higher number

of features in images. We conducted also some experiments on two applications re-

lying on local features using public data sets. The homographic registration results

and 3D reconstruction results demonstrated the accuracy and robustness of TBMR

compared to other state-of-the-art detectors.

In the future, we plan to explore the choice of the associated region from the

shape space for each critical point, which means instead of extracting the largest

region in the de�nition of TBMR, we can imagine selecting the most meaningful

region based on some signi�cance measure (e.g., average of gradient's magnitude).

But this signi�cance should be designed invariant to illumination changes and a�ne

transformations.





Chapter 5

Hierarchical image simpli�cation

Many methods relying on the morphological notion of shapes, (i.e., connected com-

ponents of level sets of a tree-based shape space) have been proved to be very useful

for pattern analysis and recognition. Selecting meaningful level lines (boundaries of

regions in the shape space given by the topographic map representation) yields to

simplify images while preserving salient structures. On the other hand, many image

simpli�cation and/or segmentation methods are driven by the optimization of an

energy functional, for instance the Mumford-Shah functional. In this chapter, we

propose an e�cient self-dual morphological shaping that very quickly compute to

a locally (subordinated to the topographic map) optimal solution of the piecewise-

constant Mumford-Shah functional, which selects a set of salient level lines, and

yields a simpli�ed image from these level lines. Moreover, using the same principle

of the piecewise-constant Mumford-Shah functional minimization subordinated to

the topographic map, an attribute function Aν can be assigned to each level line,

that characterizes its resistance under the energy minimization. Then by applying

the framework of shape-based morphology as well as the attribute function Aν , a
saliency map representing a hierarchical image simpli�cation will be obtained us-

ing the scheme presented in Section 3.6.2. Experimental results demonstrate the

e�ciency, usefulness, and robustness of our method, when applied to image sim-

pli�cation, color image pre-segmentation, and autophagosome counting in cellular

images.

5.1 Introduction

In natural images, meaningful contours are usually smooth and well-contrasted.

Recently, many authors claim that signi�cant contours of objects in images coincide

with segments of the image level lines [Caselles 1999]. Each connected level line

is the contour of a region in the shape space given by a topographic map. Image

simpli�cation or segmentation can then be de�ned by selecting meaningful level lines

in that tree. That subject has been investigated in the past ten years by [Pardo 2002,

Cao 2005, Cardelino 2006]. In [Lu 2007] Lu et al. propose also a tree simpli�cation

method for image simpli�cation purpose using the binary partition tree and a knee
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function.

Following the seminal work of Mumford and Shah [Mumford 1989], �nding rel-

evant contours is often tackled thanks to an energy-based approach, as a compro-

mise between some image-driven force (image contrast along contours, data �delity,

etc.) and the regularity of contours. Minimizing the Mumford-Shah functional

tends to �nd a simpli�ed or segmented image into regions. Curve evolution meth-

ods [Sethian 1999, Chan 2001] are usually used to solve such an energy minimization

problem. They have solid theoretical foundations, yet they are often computational

expensive.

In this chapter we propose to formalize the piecewise-constant Mumford-shah

functional on an image, subordinated to the shape space given by its topographic

map representation. The selection of the salient level lines corresponds to a mean-

ingful locally optimal solution of the energy minimization problem. The main con-

tribution is the proposition of an e�cient greedy algorithm which takes into account

the meaningfulness of the set of level lines. Simply put, a level line is easier to remove

when it has a low degree of meaningfulness and when it favors a great decreasing

of energy. Our algorithm drives very fast to a relevant local optimum in the sense

that no more level lines can be removed while deceasing energy. The reason why

we claim that we reach a relevant optimum is that meaningful level lines are hard

to be removed during the proposed process. Note that our method actually belongs

to the class of morphological shapings described in Section 3.4.5. Besides, a vari-

ant of this greedy algorithm that computes an attribute function Aν characterizing
the resistance of being removed under the energy minimization will be proposed,

along with the scheme of hierarchy transformation (see Section 3.6) provided by the

framework of shape-based morphology, we can produce a saliency map to represent

a hierarchical image simpli�cation.

In [Guigues 2006], the authors proposed an e�cient greedy algorithm to mini-

mize the Mumford-Shah functional on a certain hierarchy, which leads to a global

optimal segmentation on that hierarchy. In [Salembier 2009], the authors gave a

detailed review of the tree �ltering strategies (see also Section 2.5.2). The works

in [Pan 2009a] and [Ballester 2007] are closest to what we propose here. They both

select meaningful level lines for image simpli�cation and segmentation purpose using

the piecewise-constant Mumford-Shah functional. In [Pan 2009a] the whole image

domain is initially considered as a single region; level lines of the topographic map

browsed from root to leaves and are successively removed until the functional cannot

decrease anymore. However, this top-down decision is based upon a non-signi�cant

energy variation since it is computed from the very few pixels lying between a

shape and their immediate sub-shapes. Actually, our work is related to the one
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described in [Ballester 2007], where at each removal step, the level line which de-

creases the most the functional is selected. As a consequence, the iterative process

of [Ballester 2007] requires not only to compute a lot of information to be able to

update the functional value after each level line suppression, but also to �nd at

each step, among all remaining level lines, the one candidate to the next removal.

Hence [Ballester 2007] is computationally expensive, while what we propose here is

fast.

The rest of this chapter is organized as follows. Some background related work

is reviewed in Section 5.2. Our proposed method is detailed in Section 5.3. In

Section 5.4, we will show how to make this method hierarchical. In Section 5.5, we

present some experimental results. We then conclude and give some perspectives in

Section 5.6.

5.2 Related work

Connected operators are �ltering tools that act by merging �at zones, the good

contour preservation properties make them very useful for image simpli�cation and

segmentation. One popular implementation of the connected operators relies on

the tree-based shape space (see Section 2.5). Many image simpli�cation and seg-

mentation methods relies on the relevant shapes extraction from the tree-based

shape space are reviewed in Section 2.6.1.3. Here, we focus particularly on the rele-

vant shapes (i.e., salient level lines) selection via variational models by minimizing

some functional (e.g. Mumford-Shah functional in Section 5.2.1). We distinguish

the functional on shape space into functional on hierarchy of segmentation (see

Section 5.2.2) and functional on morphological trees, particularly the topographic

map(see Section 5.2.3).

5.2.1 The Mumford-Shah Functional

According to the Mumford-Shah model [Mumford 1989], an image f : Ω → R or Z
is modeled as a piecewise-smooth function. A segmentation of f is de�ned as a pair

(R, f̃), where R = R1 t · · · t Rn, each region Ri is a connected component in the

image domain and ∀i 6= j, Ri ∩ Rj = ∅, f̃ is a regular function within each Ri. Let

∂R be the union of boundaries of the set of regions {Ri}:

∂R =
⋃

i=1,...,n

∂Ri, (5.1)
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then R t ∂R is the whole image domain Ω. The segmentation is given by the

minimization of the Mumford-Shah functional E(f, ∂R) de�ned by:

E(f, ∂R) =

∫∫
R
(f̃ − f)2dxdy + µ

∫∫
R
||∇f̃ || dxdy + ν |∂R|, (5.2)

where |∂R| represents the total length of the boundaries ∂R, and µ and ν are two

positive parameters. The �rst term in (5.2) is the data �delity; the second term

penalizes the lack of smoothness of the model within each region; and the last term

penalizes the total boundary length.

A special case of Eq (5.2) is obtained by restricting the segmented image f̃ to

piecewise-constant functions. For each region Ri, it is given by:

f̃ = f̃i =
1

|Ri|

∫∫
f dxdy, (5.3)

where |Ri| denotes the area of the region Ri. Then, the simpli�ed Mumford-Shah

functional is given by:

E(f, ∂R) =

∫∫
R
(f̃i − f)2 dxdy + ν |∂R|. (5.4)

Since it is usually di�cult to minimize the energy functional of Eq (5.2), the sim-

pli�ed Mumford-Shah functional given by Eq (5.4) is used instead.

Curve evolution methods [Sethian 1999] are usually used to solve such an energy

minimization problem. Indeed, the optimization of the Mumford-Shah functional

is predominated by active contour methods [Chan 2001, Vese 2002, Cremers 2002].

They have solid theoretical foundations, yet they are often computational expen-

sive. Besides, these active contour based optimization methods evolves via gradient

descent, which is known for its overdependence on initialization and its tendency to

achieve undesirable local minima. Recently, in order to reduce these problems, some

methods using combinatorial optimization techniques [Grady 2009, El-Zehiry 2011,

El-Zehiry 2013] are proposed to minimize the Mumford-Shah functional in Eq (5.2)

and in Eq (5.4). It has been show that the combinatorial optimization may achieve

a lower energy compared with the gradient descent methods.

5.2.2 Functional on the hierarchy of segmentation

Tree-based shape spaces are a powerful tool for image simpli�cation and segmenta-

tion, they produce a multi-scale representation which allows to design robust and

fast algorithms. One class of the tree-based shape space, the hierarchies of segmen-

tation H provides a tremendously reduced space of partitions (i.e., the family of all

possible cuts of H denoted as C(H)), compared with the space of all possible parti-

tions of the image. We shall detail the minimization of the simpli�ed Mumford-Shah
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subordinated to the space of partitions given by a hierarchy of segmentation using

the theory of scale-sets image analysis proposed by Guigues et al. [Guigues 2006].

Let P denotes a partition of image domain Ω, and let P(Ω) and Part(Ω) denote

respectively the family of subsets of Ω and partitions of image domain Ω.

De�nition 10 An energy function Eλ: Part(Ω) → R+ is an a�ne energy on

Part(Ω) if there exists two functions C,D: Part(Ω)→ R+ and a parameter λ ∈ R+

such that

Eλ(P) = λC +D ∀P ∈ Part(Ω). (5.5)

In practice, D is usually a goodness-of-�t term (e.g., L2 norm data �delity),

and C is a regularization term (e.g., length of boundaries). The piecewise-constant

Mumford-Shah functional in Eq (5.4) is a such example denoted as Eν .

De�nition 11 An energy function E: Part(Ω)→ R+ is a separable energy if

E(P) =
∑
Ri∈P

E(Ri) ∀P ∈ Part(Ω). (5.6)

The two terms of the piecewise-constant Mumford-Shah functional are examples

of separable energy function via the function E: P(Ω)→ R+:

E(Ri) =

∫∫
Ri

(f̃i − f)2 dxdy +
ν

2
|∂Ri| ∀Ri ∈ P(Ω), (5.7)

where |∂Ri| denotes the length of the contour of region Ri.

De�nition 12 An energy function E: P(Ω)→ R+ is a subadditive energy if

E(Ri ∪Rj) ≤ E(Ri) + E(Rj) ∀Ri, Rj ∈ P(Ω) such that Ri ∩Rj = ∅. (5.8)

The regularization term of the piecewise-constant Mumford-Shah in Eq (5.4)

(i.e., length of boundaries) is an example of subadditive energy function.

De�nition 13 Let Eλ = λC + D be an a�ne energy. Then Eλ is said to be a

multi-scale energy if C and D are separable and C is subadditive. The value λ is

called the scale parameter of the energy.

Recall that a parameter λ behaves as a scale parameter if it obeys the causal-

ity principle (see Section 2.3.7 and [Koenderink 1984, Morel 1995, Guigues 2006]),

which says for any couple of scales λ2 > λ1, the �structure� found at scale λ2 must
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�nd some �cause� at scale λ1. In the case of image partitions, this principle is de�ned

through the presence of boundaries, the boundaries of partition Pλ2 are in one-to-

one mapping of a subset of boundaries of partition Pλ1 , which means partition Pλ1
is �ner than partition Pλ2 : Pλ1 v Pλ2 .

The piecewise-constant Mumford-Shah functional in Eq (5.4) denoted as Eν

is a multi-scale energy. Let us review the algorithm proposed by Guigues et al.

in [Guigues 2006] that deals with a multi-scale energy Eλ subordinated to a hier-

archy of segmentation H. For any λ ∈ R+, let C∗λ(H) ∈ C(H) be the cut of the

hierarchy H that minimizes Eλ. A region Ri ∈ H which belongs to this cut C∗λ(H)

is called λ-optimal. For each region Ri ∈ H, let H(Ri) be the partial hierarchy

rooted at Ri given by:

H(Ri) = {Rj |Rj ∈ H such that Rj ⊆ Ri}, (5.9)

and let C
(
H(Ri)

)
be the family of all possible cuts of the partial hierarchy H(Ri).

As proved in [Guigues 2006], we have the following proposition:

Proposition 10 A region Ri ∈ H is λ-optimal for an multi-scale energy Eλ:

C(H)→ R+ if and only if the following two properties hold:

(i) Ri is partially λ-optimal, i.e., ∀C(H(Ri)) ∈ C(H(Ri)), E
λ({Ri}) ≤

Eλ(C(H(Ri))).

(ii) Ri is maximal in H for the property (i), which means there is no region Rj ∈ H
such that Ri ⊂ Rj is also partially λ-optimal.

In what follows, let P ∗λ (H) be the set of all partially λ−optimal nodes of H,

that is the set of nodes of H which verify the property (i) of Proposition 10 for the

energy Eλ.

For each region Ri ∈ H, let

Λ∗(Ri) , {λ |Ri ∈ C∗λ(H)} (5.10)

be the set of scales such that the region Ri is in the cut of H minimizing Eλ. Also

let

Λ∗↑(Ri) , {λ |Ri ∈ P ∗λ (H)} (5.11)

be the set of scales for which Ri is partially λ-optimal. As shown in [Guigues 2006],

when Eλ is a multi-scale energy, if Ri is partially λ-optimal, then it is also partially

λ′-optimal for any λ′ > λ. Thus Λ∗↑(Ri) is an interval of type [a,+∞). Following

the maximal principle of condition (ii) in Proposition 10, we de�ne also

Λ∗↓(Ri) ,
⋃

Rj∈H,Ri⊂Rj

Λ∗↑(Rj) (5.12)
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which represents a set of scales for which Ri is no longer maximal for the property (i)

in Proposition 10. Note that the union of intervals of type [a,+∞) is still an interval

of that type. The two conditions of a region Ri being λ-optimal in Proposition 10

can be summarized as follows:

Λ∗(Ri) = Λ∗↑(Ri)\Λ∗↓(Ri), (5.13)

which leads to the following proposition:

Proposition 11 Given a multi-scale energy Eλ subordinated to a hierarchy of

segmentation H, we have ∀Ri ∈ H, the set Λ∗(Ri) is an interval of the type

Λ∗(Ri) = [λ+(Ri), λ
−(Ri), where

λ+(Ri) = infΛ∗↑(Ri), (5.14)

λ−(Ri) = infΛ∗↓(Ri). (5.15)

Thus we have

C∗λ(H) = {Ri |Ri ∈ H such that λ+(Ri) ≤ λ < λ−(Ri)}. (5.16)

The interval Λ∗(Ri) for a region R ∈ H is called the persistence of the region Ri.

The notion of persistent hierarchy H∗ obtained from a hierarchy and a multi-scale

energy Eλ is de�ned as follows:

H∗ , {Ri |Ri ∈ H such that Λ∗(Ri) 6= ∅}. (5.17)

On this persistent H∗, we have λ−(Ri) = λ+(Rpi ), where R
p
i denotes the parent

of Ri in H∗. Thus knowing λ+(Ri) for each node of H∗, λ− can be easily computed.

We shall now explain how λ+ can be e�ciently computed via dynamic programming

method [Guigues 2006].

For each Ri ∈ H,λ ∈ R+, we de�ne

E(λ,Ri) = λC(Ri) +D(Ri). (5.18)

We de�ne the partial energy of the node Ri ∈ H as the energy of the optimal

cut of H(Ri) with respect to Eλ, and we denote it by E∗(λ,Ri):

E∗(λ,Ri) = Eλ(C∗λ(H(Ri))). (5.19)

Note that for any leave node Rl ∈ H, we have E∗(λ,Rl) = E(λ,Rl) holds for

any λ ∈ R+. As shown in [Guigues 2006], we have the following propositions:
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Proposition 12 For each node Ri ∈ H, the partial energy E∗(λ,Ri) is related by

the dynamic programming equation:

E∗(λ,Ri) = inf

E(λ,Ri),
∑

S∈F(Ri)

E∗(λ, S)

 , (5.20)

where F(Ri) is the family of children of Ri.

Proposition 13 Let Eλ = λC +D a multi-scale energy on the hierarchy of image

segmentation H, then ∀Ri ∈ H, we have

(i) E∗(λ,Ri) is a piecewise a�ne, non decreasing, continuous and concave func-

tion of λ.

(ii) ∀λ ∈ R+,

E∗(λ,Ri) =


∑

s∈F(Ri)

E∗(λ, S) if λ < λ+(Ri)

E(λ,Ri) otherwise
(5.21)

(iii) If C is strictly subadditive, which means ∀Rj ∈ H,C(Rj) <
∑

S∈F(Rj)

C(S)

(e.g., the boundary length of the piecewise-constant Mumford-Shah functional

in Eq (5.4)), then λ+(Ri) is the unique solution of

E(λ,Ri) =
∑

S∈F(Ri)

E∗(λ, S). (5.22)

Combining the results in Propositions 11, 12, 13, we are able to compute

the partition given by the optimal cut C∗λ(H) minimizing the piecewise-constant

Mumford-Shah functional in Eq (5.4) subordinated to a hierarchy of segmentation

H for any λ ∈ R+. Note that this C∗λ(H) obtained with the work of Guigues et

al. [Guigues 2006] is a global optimal solution among all the possible cuts of the

hierarchy of segmentation.

5.2.3 Functional on the topographic map

The works in [Pan 2009a] and [Ballester 2007] are closest to our simpli�cation

method in this chapter. The basic idea is to minimize the simpli�ed Mumford-Shah

functional in Eq. (5.4) subordinated to the topographic maps. The segmentation

is restricted to the regions whose boundaries are level lines. Although this is not

the general context for a segmentation, since the meaningful boundaries of objects
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may not coincide with full level lines, but segments of them [Caselles 1999]. How-

ever, the main edges of the image are included in them, and the level lines are

contrast invariant and robust. So still this is very useful as an image simpli�cation

or pre-segmentation tool.

More speci�cally, for a given topographic map T composed of a set of shapes

{τi}, any two successive shapes of T are related by an edge re�ecting the inclusion

relationship, also known as the parenthood between nodes of the tree. Let

∂T = {∂τ | τ ∈ T } (5.23)

be the union of boundaries of all the shapes of T . The minimization of the energy

functional of Eq (5.4) restricted to T is given by:

min
T ′

E(f, ∂T ′), (5.24)

where T ′ is a simpli�ed version of T by removing some shapes from T and by

updating the parenthood relationship between the shapes of T ′. The parenthood

relationship between those preserved shapes is updated by taking the lowest pre-

served ancestor as the parent. The inclusion relationship between any two successive

shapes of T ′ still holds. So T ′ has also a tree structure.

The basic operation of the energy minimization problem of Eq (5.24) is the

merging of the element �regions� formed by the level lines ∂T . For each given shape

τ , the induced element �region� Rτ is de�ned as:

Rτ = {p | p ∈ τ, p /∈ C(τ)}, (5.25)

where C(τ) denotes all the children of the shape τ . Note that Rτ is not always a

spatial connected component due to the fact that two successive level lines may have

some part in common, this may cause a spatial separation of those pixels within Rτ .

But these pixels are indeed in the same connected component of τ and any other

ancestor of τ . An element �region� Rτ is merged with the element �region� Rτp
induced by its parent τp. This merging process can also be seen as a level line

suppression, which will cause the update of the �region� for its parent:

R′τp = Rτp ∪Rτ . (5.26)

The parenthood relationship for its children τc1, . . . , τck should also be updated to

τp. Fig. 5.1 shows an example of a such merging operation.

Observe that the minimization problem of Eq. (5.24) is a combinatorial opti-

mization. The computation of the optimum has an exponential complexity. Hence

the greedy algorithm is usually applied to compute a local optimum instead of a
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τs2

τs1

τp

τ Rτp

τc1 τc2Rτ τs2

τs1

τp

τc1 τc2

Rτp=Rτp∪Rτ'

Figure 5.1: Suppressing the node τ makes the �region� Rτ (covered with red oblique

lines) merge with Rτp ; the result (depicted in the right image) is a simpli�ed image.

global optimum. It iteratively removes those level lines, while removed, the func-

tional decreases. The greedy algorithm stops if no more level line can be removed

that favors a decrease of the energy functional. The removability of a level line ∂τ

is decided by the sign of the simpli�ed functional of Eq. (5.4) variation ∆Eτ while

τ is suppressed. Let S(f,Ri) be the sum of value of all the pixels inside region Ri.

Then the functional variation ∆Eτ is given by:

∆Eτ =
S2(f,Rτ )

|Rτ |
+
S2(f,Rτp)

|Rτp |
−
S2(f,R′τp)

|R′τp |
− ν|∂τ |. (5.27)

If ∆Eτ is negative, which means the suppression of τ decreases the functional,

then remove τ . According to Eq. (5.27), the removability of a shape τ depends only

on Rτ and Rτp . As a shape τ suppression triggers the update of Rτp , the removal of τ

impacts also the removability of its relatives, i.e., its parent, its children and siblings.

So the order of level line removal is critical. Di�erent choice of suppression order

drives to di�erent local optimum solution of (5.24). In [Pan 2009a], Pan propose to

remove the level lines for top to down (i.e., root node to leaves node). In the work

of Ballester et al. In [Ballester 2007], the authors propose to remove the level line

that decreases the most the functional at each remove step.

5.3 E�cient salient level lines selection

In this section, we will detail the proposed method for image simpli�cation based

on the minimization of piecewise-constant Mumford-Shah functional subordinated

to the topographic maps. It is an e�cient alternative to the method of Ballester

et al [Ballester 2007] by introducing an e�cient level lines ordering heuristics. We

�rst discuss the importance of the level lines ordering in Section 5.3.1 for the greedy

algorithm minimizing the energy functional. Then we will present the proposed algo-

rithm in Section 5.3.2, where we will also show that this simpli�cation method is one
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of the many variant of self-dual morphological shapings introduced in Section 3.4.5.

5.3.1 Level lines sorting

As discussed in Section 5.2.3, the order of level lines removal is critical for the

greedy algorithm minimizing the energy functional in Eq (5.4) subordinated to the

topographic map. The order used in the work of Pan [Pan 2009a] is a top-down

(i.e., from root node to the leaves node) decision. Such order is not quite reliable,

because the removal decision for a level line ∂τ under scrutiny is based on the sign

of the Eq (5.27) in which Rτ has very few pixels lying between the level line ∂τ itself

and its direct children, whereas Rτp may have many more pixels. In the work of

Ballester et al. [Ballester 2007], the order is decided by the greedy algorithm itself.

At each step, the algorithm selects the shape among the non removed ones that

decreases the most the energy functional. It bears a heavy computational update of

∆E for the nodes that are relatives of the suppressed level line. In addition, after

each update, it also requires to �nd the new level line with the highest negative

functional variation ∆E. We propose to �x that issue by introducing a reasonable

ordering of level lines based on their meaningfulness.

In the framework of classical connected operators (see Chapter 2), the at-

tribute function A characterizing each node plays a very important role in con-

nected �ltering, which have been shown be interesting for image simpli�ca-

tion/segmentation in many works [Breen 1996, Salembier 1998, Salembier 2000,

Wilkinson 2001, Ballester 2007, Lu 2007]. For example, let attribute function A
that measures the meaningfulness of each shape (i.e., a level line), then the classical

connected �ltering is usually performed by removing the nodes whose attribute is

lower than a given threshold. We propose to combine this idea of classical con-

nected operators with the energy minimization problem of Eq (5.24). Simply put,

for each shape τ ∈ T , we assign an attribute function A, and we sort the set of

shapes {τ | τ ∈ T } in increasing order of the attribute function A, then following

this order, apply the level lines removal process according to the sign of Eq (5.27).

Observe that the minimization of energy functional in Eq (5.4) favors the removal

of level lines having small contrast (by data �delity term) or being complex, which

is in accord with the fact that meaningful contours in natural images are usually

well-contrasted and smooth. Thus the average of gradient's magnitude along the

level line de�ned in Eq (3.8) and the compactness de�ned in Section 2.5.2 might be

useful for the level lines sorting. Besides, the average of curvature along the level

lines de�ned as bellow might also be interesting.

Aκ(N ) =
( ∑
e∈∂N

curv(e)
)
/|∂N|, (5.28)
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where |∂N| denotes the length of the boundary, and curv : E → R is an image of

curvature.

In the point of view of classical connected �ltering, the level lines removal guided

by the energy minimization of Eq (5.4) make the �ltering decision more robust.

In fact, for the classical connected �ltering, the attribute thresholding strategy is

equivalent to localize a node Nc among the sorted level lines, and �lter all the nodes

from the beginning till this node Nc in of the sorted level lines. Whereas, the level

lines removal decision made by the energy minimization �lters many level lines in

the beginning of the sorted level lines, and fewer and fewer level lines at the end of

the sorted level lines.

In the point of view of energy minimization of Eq (5.24) the shapes having small

(resp. great) attributeA (i.e., meaningfulness) is easier (resp. more di�cult) to �lter

under the energy minimization process. The level lines sorting provides a reasonable

order to perform the level lines suppression that make the energy functional decrease.

5.3.2 E�cient greedy algorithm

For a given image f and its associated topographic map representation T , the
output is a simpli�ed tree T ′ from which a simpli�ed image f ′ is reconstructed.

Our proposed algorithm is described in the following:

Initialization: The output tree, T ′, will be incrementally simpli�ed. First, it is set

to T ′ = T .

Step 1: Sort the set of shapes {τ | τ ∈ T } in the increasing order O of shape

meaningfulness indicated by an attribute function A.

Step 2: Propagate the shapes in the order O, for each shape τ ∈ T ′, compute

∆Eτ . If it is negative, remove τ from T ′, update R′τp and update the parenthood

relationship for its children on T ′.

As a level line removal process during the minimization process a�ects the re-

movability of its parent and children, so it is possible that for a shape τ that has

been veri�ed to be preserved, the preservation decision of τ may be altered by the

later removal of its parent or some child. Consequently, step 2 may need to be it-

erated until no shape can be removed. In practice, 2 or 3 propagations are enough,

and most of the level lines are removed in the �rst propagation. In consequence, the

complexity of the minimization problem of Eq. (5.24) is linear w.r.t. the number of

shapes of T .
Note that the image reconstructed f ′ from the last tree T ′ is a locally optimal

solution of Eq. (5.24) in the sense that any more level line removal will increase the

simpli�ed Mumford-Shah functional.
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As the proposed greedy algorithm removes the level lines everywhere in the tree

structure T no matter the attribute function A used for sorting the level lines is

increasing or not, and as the underlying tree T is the topographic map, so this

simpli�cation method is not a leveling. It belongs actually to the family of self-

dual morphological shapings introduced in Section 3.4.5. However, for this greedy

algorithm, no explicit shape attribute function As is utilized to apply shaping, the

shaping process is performed by the energy minimization of Eq (5.4).

5.4 Making the method hierarchical

In this section, we will show how to expand the principle of image simpli�cation

described in Section 5.3 to produce a hierarchical image simpli�cation. It is achieved

by using the framework of shape-based morphology described in Chapter 3. First

of all, we will discuss the causality principle for hierarchical image simpli�cation

in Section 5.4.1, then in Section 5.4.2, we will show how to deduce an explicit

attribute function Aν following the idea of salient level lines selection by minimizing

the simpli�ed Mumford-Shah functional. Finally, a saliency map representing a

hierarchical image simpli�cation will be detailed in Section 5.4.3 relying on the

framework of shape-based morphology.

5.4.1 Causality principle

In the case of the piecewise-constant Mumford-Shah functional minimization applied

on a hierarchy of segmentation (see Section 5.2.2), the parameter ν in Eq (5.4) is a

scale parameter satisfying the causality principle, which says for ν2 > ν1, a contour

presented at a larger scale ν2 must also present at the scale ν1. We propose to

adapt the causality principle to the proposed image simpli�cation in Section 5.3 by

hierarchical salient level lines selection.

De�nition 14 For two parameters ν2 > ν1, if the level lines selected by minimizing

the energy functional in Eq (5.4) with ν2 are also preserved by minimizing the energy

functional with ν1, then the method of salient level lines selection is causal and

hierarchical.

The greedy algorithm proposed in Section 5.3 is a fast alternative of the al-

gorithm of Ballester et al. [Ballester 2007], but it is not hierarchical according to

De�nition 14. Because for some level line τ , it may be removed with a parameter

ν1, but preserved for a bigger ν2 > ν1. A such example is given in Figure 5.2,

the shape on top middle of the image (c) is preserved for ν2 = 500, while it is re-
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(a) (b) (c)

Figure 5.2: Illustration of causality principle violation. (a): input image; (b): ran-

domly colorized simpli�ed image with ν = 100; (c): randomly colorized simpli�ed

image with ν = 500.

moved for ν1 = 100 in image (b). Note that the original algorithm of Ballester et

al. [Ballester 2007] is not hierarchical neither.

5.4.2 Attribute Aν based on the functional

In order to make the simpli�cation method described in Section 5.3 hierarchical,

we propose to use the framework of shape-based morphology, where an attribute

functionA characterizing each node is required. Thus instead of �xing the parameter

ν in Eq (5.4), we compute an individual ν for each shape of the tree following the

same principle of the energy minimization. Let us denote this as Aν .
In fact, for a given ν, the removability of a shape τ is based on the sign of

∆Eτ in Eq (5.27). The energy variation∆Eτ is a increasing linear function with

respect to ν, when ν is bigger enough than some value νmin, ∆Eτ will be negative,

which implies the removal of this shape decreases the energy functional, and it will

be removed. Thus the νmin is a value of transition for the removal decision of the

underlying shape. Let us this value of transition as the attribute function Aν given
by

Aν(τ) =

S2(f,Rτ )
|Rτ | +

S2(f,Rτp )

|Rτp |
−

S2(f,R′τp )

|R′τp |

|∂τ |
. (5.29)

Note that for a given shape τ , the attribute function Aν(τ) de�ned in Eq (5.29)

depends on its element �region� Rτ and the element �region� of its parent Rτp , which

means Aν(τ) is decided by the shape τ itself, its parent, its siblings, and its children.

Besides, since the attribute function Aν is computed under the hypothesis that the

shape τ under scrutiny is suppressed, in the same way as the algorithm described

in Section 5.3.2, we need to update the element �region� for its parent by Eq (5.26),

and update the parenthood relationship for its children to its parent. These update
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operations will a�ect the computation of Aν for the parent, children and siblings

of τ . So the computation order is again important. We propose three attribute

function Aν computations based on di�erent propagation orders.

1 Shape meaningfulness increasing

step 1: Compute ν for each shape τ ∈ T according to 5.29 as the initial Aν and sort

the set of shapes {τ | τ ∈ T } on basis of the shape meaningfulness increasing order

as described in Section 5.3.1.

step 2: Propagated the sorted shapes in increasing order, and remove the shape

ν one by one. Update the value Aν for its not suppressed parent, children, and

siblings only if they are bigger than the old values. Update also the parenthood

relationship.

2 Shape meaningfulness and ν increasing

step 1: The same as the �rst step of the shape meaningfulness increasing order.

step 2: Propagate the sorted shapes in increasing order, remove the �rst not sup-

pressed shape τ and all the shapes whose current Aν is less than Aν(τ). Do the

same update operations for those related shapes of the removed one/ones.

3 ν increasing

step 1: Compute ν for each shape τ ∈ T as the initial value of Aν .
step 2: Remove the shape with the smallest Aν and do the update operations.

Repeat this step till all shapes are suppressed.

Among these three possibilities of computing Aν , the �rst one based on the

shape meaningfulness is the most fast one. For each node under scrutiny, we do not

have to verify if other shapes can also be removed, contrary to the second and third

one.

This attribute function Aν is related to the minimization of the piecewise-

constant Mumford-Shah functional. It measures the resistance of a shape to be

removed under the minimization problem of Eq (5.24). A bigger Aν(τ) means

that it is more di�cult to remove the shape τ . Thus the attribute function Aν is

also some kind of meaningfulness measurement deduced from the piecewise-constant

Mumford-Shah functional.

5.4.3 Saliency map representing hierarchical selection

Following the idea of Section 3.6, we can compute �rst of all an attribute mapM◦Aν
using Aν described in Section 5.4.2 to illustrate the meaningfulness of the level lines

in image. An example is illustrated in Figure 5.3 (b), where we can observe that the
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visual salient level lines have great value Aν values, which signi�es that they resist

to be removed under by the minimization in Eq (5.24). However, in this attribute

map, there are many close level lines are relative salient, but only one of them is

desired. A salient mapME using the extinction value de�ned on the local minima

of the following attribute function is used to �x that issue.

A↓ν(τ) = max
τ ′∈T

(
Aν(τ ′)

)
−Aν(τ). (5.30)

As shown in Figure 5.3 (c), only one meaningful level line is presented to rep-

resent a salient level line in the image. This saliency map represents a hierarchical

level lines selection. Each thresholding of this map ME selects salient (of certain

degree) level lines from which a simpli�ed image simpli�cation is reconstructed as

depicted in Figure 5.3 (d), (e), and (f) with respectively a small, median, and great

thresholding value. Note that the level lines of the simpli�ed images in (d), (e),

and (f) obey the causality principle given by De�nition 14.

5.5 Results

We �rst illustrate the importance of the level lines removal order in Section 5.5.1

through a comparison of the increasing order Eq (3.8) and decreasing order of

Eq (5.28), and a random order. For the rest of the experiments, the shape mean-

ingfulness we use to sort the level lines is the average of gradient magnitude along

the level lines in Eq (3.8). In Section 5.5.2, we compare the proposed image simpli-

�cation described in Section 5.3 with the method of Ballester et al. [Ballester 2007],

which shows that our method achieves a similar simpli�cation result, but with a sig-

ni�cantly reduced time. Then the robustness of the proposed simpli�cation method

with respect to increasing Gaussian noise is illustrated in Section 5.5.3. Some hier-

archical image simpli�cation applied on the images of BSDS500 [Arbelaez 2011] are

shown in Section 5.5.4. Then in Section 5.5.5, we apply the simpli�cation method

to color images in BSDS500. As the topographic map for a color image is still un-

der development, we simply use the union of the selected salient level lines in the

red, green, and blue channel. This process yields a pre-segmentation result having

very few salient regions, and the boundaries between them remain intact. Finding

an actual segmentation becomes a lot easier with such pre-segmentation. Finally,

in Section 5.5.6, we apply the simpli�cation method to count the autophagosomes

which are usually presented as small and round structures with di�erent contrast in

cellular images. Quantitative assessment shows that this scheme achieves a compa-

rable results compared with the number of autophagosomes counted by experts on

a sequence of images.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Illustration of saliency map representing the hierarchical salient level

lines selection using shape meaningfulness increasing order. (a): input image; (b):

attribute map de�ned on boundariesM◦Aν ; (c): saliency mapME representing the

hierarchical salient level lines selection. (d-f): a simpli�ed image reconstructed from

the level lines obtained by thresholding the saliency map ME with respectively

small, median, and great threshold value.
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5.5.1 Importance of the pre-computed ordering

As discussed in Section 5.3, the level lines removal order is critical to the result

of the greedy algorithm that computes a local optimum of Eq (5.24). To assess

the importance of the pre-computed ordering, we begin with a random order of the

level lines for the greedy algorithm described in Section 5.3.2. Then we compare

the simpli�cation result given by the random order with the ones obtained using

respectively the decreasing, increasing order of Eq (3.8) (i.e., average of gradient's

magnitude), and decreasing order of Eq (5.28) (i.e., average of curvature).

An example of such comparison applied on image shown in Figure 5.3 is depicted

in Figure 5.4. For the random order used in (a), the meaningful level lines corre-

sponding to the head of the plane is removed. In (b), although many level lines are

selected using the decreasing order of average of gradient magnitude, many salient

ones are removed. In (c) and (d), few level lines are selected, but the simpli�cation

results are more reasonable in the sense that they contain almost all the salient

ones in image. This comparison con�rms that the level lines removal order is very

important, and the shape meaningfulness increasing order is a reasonable choice.

5.5.2 Comparison with the method of Ballester et al.

In Figure 5.5, we compare our proposed method with the one of Ballester et al. on

a classic image �house� (256×256) having originally 23578 level lines. Qualitatively,

the image (b) and (c) obtained by the two methods using the same parameter

ν = 1000 are very close. The result (Figure 5.5 (b)) given by the method of Ballester

retains 30 level lines, and 27 level lines are selected by our approach. In spite of their

strong simpli�cations, the salient structures are preserved in the simpli�ed images.

The distinct �nal functional minimized by the two approaches con�rms that they

fall into di�erent local minimum. The CPU time for the Ballester method that we

implemented and our approach are respectively 4s and 0.2s on a regular PC station

with an Intel Core i7 3.40GHz and 8 Gbytes of memory.

5.5.3 Robustness to noise

Fig. 5.6 shows a quantitative evolution of our method w.r.t. increasing noise.

The image �house� is corrupted with an additive Gaussian noise of variance δ2 =

5, 10, 15, 20, 25. All the results are obtained using the same parameter ν = 400.

Qualitatively, the simpli�cation results from (a) to (f) are very close. They indeed

select almost the same amount of level lines (around 32), and most of them coincide

with the same salient structures in the image. Furthermore, the similar PSNR of

each result also con�rms the robustness of the proposed method w.r.t. noise.
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(a) Random order (16 ∂τ) (b) Decreasing order of Eq (3.8) (290 ∂τ)

(c) Increasing order of Eq (3.8) (8 ∂τ) (d) Decreasing order of Eq (5.28) (12 ∂τ)

Figure 5.4: Comparison of the proposed greedy algorithm using di�erent orders of

the level lines. The parameter ν is set to ν = 1000.

(a) Input image (b) Ballester, ν = 1k (c) Our, ν = 1k

Figure 5.5: Comparison of our approach with the one of Ballester et al.. (a): E =

1.2433e + 08; (b): E = 1.28113e + 07, PSNR = 27.3; (c): E = 1.15285e + 07,

PSNR = 28.7.
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(a) Original image (b) δ2 = 5 (c) δ2 = 10

(d) PSNR = 29.1 (e) PSNR = 28.8 (f) PSNR = 28.2

(g) δ2 = 15 (h) δ2 = 20 (i) δ2 = 25

(j) PSNR = 27.5 (k) PSNR = 26.7 (l) PSNR = 26.3.

Figure 5.6: Qualitative behavior of our method w.r.t. increasing noise. (d-f, j-l):

Corresponding result applied to images of (a-c, g-i) with additive Gaussian noise of

variance going from 0 (b) to 25 (f) with a step of 5.
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5.5.4 Hierarchical image simpli�cation

In Section 5.4.2, we propose three manners to compute an attribute function Aν
bearing the same idea of the image simpli�cation method by solving Eq (5.24).

Based on this attribute function Aν , we have shown in Section 5.4 that we are

able to compute a saliency map ME representing a hierarchical salient level lines

selection. In Figure 5.7, we illustrate an example of the saliency map ME using

the extinction values de�ned on the local minima of the three possible attribute

function Aν . For the image shown in Figure 5.7 (a), the corresponding saliency

map ME is depicted respectively in (b) for the shape meaningfulness increasing

order, in (d) for the shape meaningfulness and ν increasing order, and in (f) for

the ν increasing order. Qualitatively, these three saliency maps are very similar.

A simpli�ed image reconstructed from the level lines obtained by thresholding the

corresponding saliency map with the same threshold value is depicted on the right

side. These simpli�ed images are indeed quite close. Another example of saliency

map representing a hierarchical image simpli�cation is shown in Figure 5.7 (h-j)

using the Aν computed with shape meaningfulness increasing order.

5.5.5 Color image pre-segmentation

In Fig. 5.8, we test our proposed method to color images from the Berke-

ley Segmentation Dataset BSDS500 [Arbelaez 2011], an extension of the

BSDS300 [Martin 2001]. The strategy is to apply individually the proposed method

to the red fr, green fg, and blue fb channels. In order to obtain a pre-segmentation,

a high parameter value ν = 2500 is used, and a grain �lter [Monasse 2000b] is ap-

plied to get rid of too tiny shapes. Less than 50 level lines are selected for each

channel of each image, which results in a ratio of level lines selection around 2300.

The regions formed by the union of those selected salient level lines from the 3

channels are considered as the pre-segmented regions. The images shown in Fig. 5.8

are obtained by taking the average color inside each region, where the boundaries

between salient regions remain intact. Finding an actual segmentation becomes a

lot easier with such a pre-segmentation. In fact, for a color image fc, the salient

level lines extracted from the three channels fr, fg, and fb may have some segments

that are very close but not identical. These close segments may yield many small

regions around the meaningful boundaries in the pre-segmentation result of fc. By

merging these small regions to its most similar neighboring region, it results in a

over-segmentation result which is almost the same as a pre-segmentation for visual

perception. For those pre-segmentations in Figure 5.8, this last merging process

yields an over-segmentation having around 100 regions.
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(a) Input image (b) Saliency mapME (c) PSNR = 25.28

(d) Saliency mapME (e) PSNR = 26.17

(f) Saliency mapME (g) PSNR = 26.37

(h) Input image (i) Saliency mapME (j) PSNR = 20.10

Figure 5.7: Illustration of hierarchical image simpli�cation with the 3 proposed

Aν computations: shape meaningfulness increasing in (b); shape meaningfulness

increasing and ν increasing in (d); ν increasing in (f). Right column: corresponding

simpli�ed image reconstructed from the selected level lines given by thresholding

the saliency map in middle column with same value. (h-j): another example of

hierarchical image simpli�cation using the shape meaningfulness increasing order.
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Figure 5.8: Some pre-segmentation results obtained with our proposed method on

the Berkeley Segmentation Dataset BSDS500 [Arbelaez 2011]. Left column: input

image; Right column: pre-segmentation obtained with the simpli�cation method.
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(a) Original image (b) Less stringent counting (c) More stringent counting

Figure 5.9: An example of autophagosomes counting achieved by an expert for the

cellular image in (a). The autophagosomes are surrounded with yellow circles. There

are 19 autophagosomes for the less stringent counting in (b), and 17 autophagosomes

for the more stringent counting in (c).

5.5.6 Application to autophagosome counting

The autophagosome is a cellular compartment whose formation is tightly regulated

during development and stress responses in all eukaryotic cells (from yeast to ani-

mals and plants). Its formation allows to embark portion of the cytosol (cytosol is

the cell content eluding the nucleus and other compartments, it is found often in

the images as �long and thin objects�, e.g., the bright long and thin structures in

Figure 5.9 (a)) for bulk degradation and recycling of resources, a process known as

Autophagy (self-eating). The level of autophagy (e.g. in response to stress or drugs)

can be evaluated by counting autophagosomes (small and round �bright� objects in

Figure 5.9 (a)) present in a cell, Several proteins are involved in this process, the

ATG proteins. The protein ATG8 is present on the membranes of the autophago-

somes at all stages of its life, so that ATG8 proteins made �uorescent by genetic

engineering are widely used as reliable �markers� to identify and study autophago-

somes by �uorescent microscopy. Counting of autophagosomes is often problematic

and time-consuming, due to the fact that an important fraction of the ATG8 protein

is also present di�usely in the cytsol and in the nucleus. A counting example is given

in Figure 5.9, where the autophagosomes are surrounded with yellow circles. The

Figure 5.9 (b) and Figure 5.9 (c) correspond to respectively a less stringent and a

more stringent counting. This work of the application to autophagosome counting

is joint with Michele Bianchi.

We propose to use the simpli�cation method described in Section 5.3 to auto-

matically count the autophagosomes in a cellular image f . Observe that in a cellular
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image (see Figure 5.10 (a)) the autophagosomes are presented as �bright� small and

round objects, and the bright, long and thin structures presented also in image f are

the unwanted objects. Thus we �rst apply a shape-based upper leveling de�ned in

Section 3.4.4 to remove those bright, long and thin structures (see Figure 5.10 (b)).

The attribute function for each node N used in this shape-based upper leveling is

an elongation based measurement de�ned as bellow:

Ae(N ) =
|N |

π × l2max(N )
, (5.31)

where |N | denotes the area of the region represented by the node N , and lmax

denotes the major axes of the best �tting ellipse having the same moments as the

underlying region. The attribute Ae is low for the long and thin structures. For the

shape-based upper leveling, we simply �lter those nodes whose attribute Ae is under
a certain threshold value. A �ltered image fs (see Figure 5.10 (b)) is reconstructed

using the subtractive rule (see Section 2.5.3). Then we apply the method of salient

level lines selection described in Section 5.3 to the �ltered image fs, which yields

a simpli�ed image f ′s (see Figure 5.10 (d)). In this simpli�ed image f ′s, only few

level lines are selected, but note that there may have several level lines that are very

close and represent actually a same object. As in a cellular image f , two di�erent

autophagosomes are always disjoint, we group those close level lines and also remove

those dark level lines, which leads us to a �nal counting as shown in Figure 5.10 (f)

for the image in Figure 5.10 (a). The Figure 5.10 illustrates an example of such

scheme of autophagosome counting, where the �nal counting result is very similar

the less and more stringent counting in Figure 5.9 (b) and (c), in fact it counts 18

autophagosomes in this image compared with 19 autophagosomes for less stringent

counting, and 17 for more stringent counting.

Some results for a sequence of cellular images are shown in Figure 5.12. Quali-

tatively, the counting result obtained with the scheme relying on the proposed sim-

pli�cation method is quite close to the less stringent and more stringent counting

achieved by an expert. The number of autophagosomes counted with this scheme

is also between the interval of more stringent counting and less stringent counting

given by an expert.

A quantitative evolution of the proposed scheme relying on the proposed simpli-

�cation method is illustrated in Figure 5.12. It is applied on a sequence of images

for which a less stringent and more stringent counting by an expert are available.

The evolution in Figure 5.12 shows that this scheme achieves a result comparable to

the ground truth, which demonstrate the usefulness of the proposed simpli�cation

method.
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(a) Original image f (b) Shape �ltering fs (c) Zoomed details of fs

(d) Simpli�ed image f ′s (e) Zoomed details of f ′s (f) Final counting

Figure 5.10: Illustration of autophagosome counting. In the output of the shape-

based upper leveling (b) using the attribute Ae in Eq (5.31), there are still many

level lines as shown in (c) being the zoomed and normalized details of the red block

in (b). Whereas, in the simpli�ed image f ′s, the background is uniform as shown in

(e). There are 18 autophagosomes in the �nal counting in (f).
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(a) 9 autophagosomes (b) 7 autophagosomes (c) 8 autophagosomes

(d) 11 autophagosomes (e) 6 autophagosomes (f) 6 autophagosomes

(g) 35 autophagosomes (h) 26 autophagosomes (i) 26 autophagosomes

Figure 5.11: Some results of the autophagosome counting using the proposed simpli-

�cation method. Left column: Less stringent counting by an expert; Middle column:

More stringent counting by an expert; Right column: Result of our counting.
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Figure 5.12: A quantitative evolution of the scheme relying on the proposed simpli-

�cation method for automatic autophagosomes counting on a sequence of images.

Our result represented by the red curve is close to the less stringent counting in blue

and more stringent counting in red.

5.6 Conclusion

In this chapter, we presented an e�cient morphological shaping to salient level lines

selection, based on the minimization of the piecewise-constant Mumford-Shah func-

tional. Our major contribution is to rely on a meaningful ordering of level lines in

order to minimize this energy functional on the tree of shapes. As a consequence,

the proposed greedy algorithm converges to a relevant local optimum very quickly

compared with the similar work of Ballester et al.. We have shown that the proposed

method allows for strongly simplifying images while preserving their salient struc-

tures. We have seen that a strong property of our proposal is its robustness to noise.

Furthermore simpli�cation results can be used as pre-segmentations that are suit-

able for object recognition, scene analysis, or practical shape matching [Lisani 2003].

The application to autophagosome counting in cellular images demonstrates also its

usefulness and robustness. We have also proposed a hierarchical version of this

simpli�cation method via the saliency map obtained with the transformation of

hierarchy in the shape-based morphology.
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Shape �ltering

Connected �lters are well-known for their good contour-preservation property. A

popular implementation strategy relies on tree-based image representations detailed

in Section 2.5. The �ltering is performed by thresholding the tree based on some

attribute function A characterizing the connected component represented by each

node. Rather than being satis�ed with a mere thresholding, we propose the shape-

based morphology described in Chapter 3 by expanding this idea and applying

connected �lters on tree-based shape space. For the �ltering purpose, it is a gener-

alization of the existing tree-based connected operators. Indeed, it has been show in

Chapter 3 that the framework includes the classical existing connected operators by

attributes, and two classes of novel connected operators have also been introduced

in the framework of shape-based morphology. They are respectively shape-based

lower/upper levelings and morphological shapings. In this chapter, we will show

several applications of these shape-based �lters including retinal image analysis, and

illustration of morphological shapings. Quantitative evaluations demonstrate that

some simple shape-based �lters, as compared to more evolved processings, achieves

state-of-the-art results.

6.1 Introduction

Mathematical morphology, as originally developed by Matheron and

Serra [Serra 1982], proposes a set of morphological operators based on structuring

elements. Later, Salembier and Serra [Salembier 1995], followed by Breen and Jones

[Breen 1996], proposed morphological operators based on attributes, rather than

on elements. Such operators, also known as attribute �lters or connected �lters,

have been popularized by Salembier, Wilkinson, and Ouzounis [Salembier 2009,

Westenberg 2007, Wilkinson 2008, Ouzounis 2007, Ouzounis 2011b]. One popular

implementation of such operators relies on transforming the image into an equiv-

alent representation, generally a tree of components (e.g., level sets) of the image;

such trees are equivalent to the original image in the sense that the image can

be reconstructed from its associated tree. Filtering then involves the design of

a shape attribute that weights how much a node of the tree �ts a given shape.
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Two di�erent approaches for �ltering the tree (and hence the image) have been

proposed: the more evolved approach consists in pruning the tree by removing

some entire branches of the tree, and is easy to apply if the attribute is increasing

on the tree. However, most shape attributes are not increasing. When the attribute

is not increasing, three pruning strategies have been proposed (Min, Max, Viterbi;

see Section 2.5.2 and [Salembier 2009] for more details). Another type of strategy

is to simply remove the nodes of the tree for which the attribute is lower than a

given threshold.

The framework of shape-based morphology described in Chapter 3 shares the

same idea as the thresholding based strategy of classical tree-based connected op-

erators. But we propose to apply connected �lters on the tree-based shape space,

instead of directly on the space of image (see the black+red path of Figure 3.2).

It has been show that a straightforward of this surprising and simple idea is that

it gives more �exibilities and possibilities to deal with the non-increasing attribute,

which is usually the case for shape attributes. Indeed, It is shown that this frame-

work encompasses some usual attribute �ltering operators, and a novel connected

�lters based on non-increasing criterion is introduced from the family of levelings

called shape-based lower or upper levelings. Another class of novel connected �lters

named morphological shapings is also introduced in the framework of shape-based

morphology.

In this chapter, we focus on �ltering aspect of the framework of shape-based

morphology. Some applications of those simple shape-based �lters are studied

in this chapter. First of all, we apply the shape-based lower/upper levelings

to retinal image analysis, including blood vessels segmentation and optic nerve

head (ONH) segmentation. The benchmark of di�erent approaches of blood ves-

sels segmentation is based on two databases, DRIVE [dri 2013b], [Staal 2004]

and STARE [sta 2013], [Hoover 2000]. The results of ONH segmentation

are compared with some other more evolved approaches using the DRI-

ONS [dri 2013a], [Carmona 2008] database. In both cases, quantitative evaluations

demonstrate that shape-based �ltering achieves some state-of-the-art results. And

last, we illustrate an application of the morphological shapings.

The rest of this chapter is organized as follows. In Section 6.2, we brie�y review

a number of dedicated methods for retinal image analysis, including blood vessels

segmentation and optic nerve head (ONH) segmentation. In section 6.3, we will

detail how to apply the framework of shape-based morphology to blood vessels

segmentation and optic nerve head segmentation in retinal images. Section 6.4 gives

a set of experimental results, including applications of the proposed shape-based

lower/upper levelings to both blood vessels segmentation and ONH segmentation in
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retinal images, and a comparison of morphological shapings with classical threshold-

based approaches. Finally we conclude in Section 6.5.

6.2 Related work

In this section, we focus on some related work about the applications of the two

classes of novel connected operators given by the framework of shape-based mor-

phology. In Section 6.2.1, some dedicated methods for the retinal image analysis,

such as blood vessels segmentation, optic nerve head segmentation are �rstly re-

viewed respectively in Section 6.2.1.1 and Section 6.2.1.2.

6.2.1 Retinal image analysis

The retinal microvasculature is the very unique region of the human body that can

be directly visualized non-invasively in vivo. The retina can be photographed rela-

tively straightforwardly with a fundus camera. Several eye fundus images features

are commonly evaluated in computer aided-diagnosis of several retinopathologies,

such as diabetic retinopathy, age-related macular degeneration and retinopathy of

prematurity [Patton 2006]. The automated diagnostic systems based on some inter-

esting eye fundus images features have been much developed over the past 20 years,

which provides the potential for signi�cant resource savings in large-scale screening

programs, as well as being free from observer bias and fatigue. We will focus on two

types of features: the retinal blood vessels and the optic nerve head (ONH).

6.2.1.1 Blood vessels segmentation

The retinal vascular segmentation can be useful, for example, to measure the nar-

rowing, length, tortuosity, and branching pattern of retinal vessels. The segmen-

tation of blood vessels is important for the detection of non-proliferative diabetic

retinopathies, such as venous beading [Bade 2007, Vallabha 2004], and neovascu-

larizations [Ciulla 2003, Kauppi 2007]. Moreover, Blood vessels bifurcations are

also useful providing points in the retinal image registration and comparison pro-

cess [Laliberté 2003, Markaki 2009]. An example of an eye fundus image and its

retinal blood vessels segmentation is shown in 6.1.

There are many methods for segmentation of retinal blood vessels in the litera-

ture. We only review those methods that we will compare with, including six pixel

processing-based methods, a tracking-based method, and a method based on active

contour model. The pixel processing-based methods usually feature a common pro-

cess consisting of two steps. The �rst step is an enhancement procedure (usually a
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(a) Original image (b) Manual blood vessels segmentation

Figure 6.1: An eye fundus image (a) of DRIVE [dri 2013b] database and one manual

segmentation of retinal blood vessels (b).

convolution operator) used to select an initial set of pixels to be further validated

as vessels in the second step. The �rst method of this type is the matched �lter

proposed in [Chaudhuri 1989], where the authors use 12 rotated versions of a 2-D

Gaussian shaped template for searching vessel segments along all possible directions.

For each pixel, the maximum response to these kernels is retained. As the mean

value is subtracted from each convolution kernel, the output of this method is ideally

zero in the background, and a blood vessels segmentation result can be obtained by

thresholding this output image. In [Hoover 2000], Hoover et al. proposed also a

matched �ltering approach using local thresholding strategy to segment the retinal

vessels. Marinez-Pérez et al. proposed in [Marinez-Pérez 1999] a method based on

a two-stage region growing procedure using the features derived from image deriva-

tives obtained at multiple scales. It segments progressively the retinal vessels. Then

in [Zana 2001], the authors proposed an algorithm that combines morphological �l-

ters and cross-curvature evaluation to segment vessel-like structures. Jiang et al.

proposed in [Jiang 2003] a general framework of adaptive local thresholding using

a multi-threshold scheme, combined with a classi�cation procedure incorporating

some relevant information related with retinal vessels to verify each resulting bi-

nary object. In [Niemeijer 2004], Niemeijer et al. proposed a supervised method

based on a pixel classi�cation using a simple feature vector. They use a K-nearest

neighbor (kNN) classi�er using the features extracted form the green channel of the

color eye fundus images. It outputs a soft classi�cation that indicates the proba-
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(a) Original image (b) Manual ONH segmentations

Figure 6.2: An eye fundus image (a) of DRIONS [dri 2013a] database and two

manual ONH segmentations given by blue and green boundaries in (b).

bility of each point to be vessel point. Another supervised approach is proposed

in [Staal 2004]. In [Mendonca 2006], the authors proposed a tracking-based method

that starts with the extraction of centerlines, which are used as guidelines for the

subsequent �lling phase. The �nal retinal vessel segmentation is obtained using

an iterative region growing method that integrates the contents of several binary

images resulting from vessel width dependent morphological �lters. Lastly, Al-Diri

and Steel proposed an active contour model based method for segmenting the retinal

blood vessels [Al-Diri 2009].

6.2.1.2 Optic nerve head (ONH) segmentation

The optic nerve head (ONH), also called optic disk or papilla is oval-shaped and is

located in the area where all the retina nerve �bers come together to form the

start of the optic nerve that leaves the black of the eyeball. The localization

and segmentation of the ONH is of critical importance, which can be used qualify

retina lesions, like the exudate lesions that characterize the diabetic macular edema

(DME) [Ciulla 2003]. Moreover, it is possible to diagnose glaucoma [Ho�mann 2007]

based on the size and shape of the ONH outer boundaries. An example of the seg-

mentation of ONH in eye fundus image is illustrated in Figure 6.2.

Many methods are proposed for ONH segmentation, such as math-

ematical morphology based approach [Welfer 2010], Gabor �lters based

method [Rangayyan 2010], and Hough transform based approach [Zhu 2010]. But

we only give a short review of several methods that make use of the elliptical model of

ONH. The �rst one is the approach proposed by Lowell et al. in [Lowell 2004], where

the authors use a specialized template matching to localize the ONH, and segmen-

tation of ONH is achieved by a deformable contour model using a global elliptical
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model and a local deformable model with variable edge-strength dependent sti�ness.

In [Carmona 2008], the authors proposed a method to identify the ONH contour with

genetic algorithms in two steps. First of all, they extract a set of hypothesis interest

points (IPs) exhibiting geometric properties and intensity levels similar to the ONH

contour pixels. Then a genetic algorithm was used to �nd an ellipse containing the

maximum number of hypothesis points in an o�set of its perimeter. This elliptical

region is �nally considered as the segmented ONH. Molina and Carmona proposed

in [Molina 2011] a variant of the method in [Carmona 2008]. The main di�erence

between them lies in how to obtain the set of IPs. In [Carmona 2008], the set of IPs

are obtained using a domain-knowledge-based method. Whereas, in [Molina 2011],

they used a Laplacian pyramid of the eye fundus image to obtain the set of IPs.

6.3 Shape �ltering for retinal image analysis

The retinal blood vessels are usually long and thin structures in an eye fundus

image, it can be characterized by some shape attribute (e.g., the elongation de�ned

in Eq (5.31)). Besides, the optic nerve head can be usually approximated by an

elliptical region, which can also be described by a shape attribute. Moreover, unlike

classical linear �lters, connected operators preserve the location and the shape of the

contours. All these provide us a motivation for using the shape-based �lters to blood

vessels segmentation (see Section 6.3.1) and ONH segmentation (see Section 6.3.2)

in retinal image analysis.

6.3.1 Blood vessels segmentation

Many existing methods of retinal blood vessels segmentation work on the green

channel of the color retinal image. To improve the visibility of the blood vessels, for

each color retinal image fc, a black top-hat transform is applied to the green channel

fg. When a mask of eye fundus is available, we combine it with the black top-hat

ft. We thus obtain an image fi in which the blood vessels are visible: indeed, the

main structures of the blood vessels are present in the Max-tree T representation

of fi.

For each connected component represented by some N of the Max-tree T , we
compute a shape attribute A characterizing the blood vessels, which are usually

long and thin structures. The attribute used here is the elongation Ae de�ned in

Eq (5.31). Since the blood vessels are long and thin, nodes having a low attribute

Ae correspond to the blood vessels.

The core of this application is the �ltering of the Max-tree T . A mere thresh-

olding of the elongation Ae is not su�cient, often giving unwanted objects (noise).
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(a) Input color image fc (b) Green channel fg (c) Inversed black top-hat fi

(d) Inversed �ltering result (e) Segmented blood vessels (f) Manual segmentation

Figure 6.3: Illustration of the complete process of blood vessels segmentation in

retinal image using elongation-based upper leveling (a-e); (f): Manual segmentation.

However, a very low thresholding value tmin on Ae ensures that thresholded nodes

are blood vessels. These initial extracted nodes are used as seeds in the sequel. We

then apply a morphological �ltering with a depth criterion: using the Min-tree T T
of the node weighted graph (GT ,Ae), we only preserve the nodes that have a certain
depth d0 in T T and that furthermore contain the seeds. The connected components

represented by the preserved nodes are considered as segmented blood vessels. The

whole process is one of the many variant of shape-based upper levelings.

An example of such a blood vessels segmentation process is given in Figure 6.3.

Compared with the manually segmented blood vessels segmentation (Figure 6.3 (f)),

the elongation-based upper leveling (Figure 6.3 (e)) correctly segments most of the

blood vessels.
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6.3.2 Optic nerve head (ONH) segmentation

In retinal image analysis, another critical task is the optic nerve head (also called

optic disk or papilla) localization and segmentation. The segmented blood vessels

can be used to locate the optic disk [Welfer 2010]. Besides, the optic disk has an

elliptical shape [Lowell 2004], [Carmona 2008], [Molina 2011], which motivates us to

use the shape-based morphology.

The optic disk is usually visible, but separated into several parts by the blood

vessels in the red channel fr of the color eye fundus image fc. Unlike the work

of Welfer et al. [Welfer 2010], we make use of the segmented blood vessels as pre-

processing. More speci�cally, the method presented in Section 6.3.1 using the pro-

posed elongation-based upper leveling provides the segmented blood vessels fb. For

those pixels belonging to the blood vessels in fr, they take the value of the closest

non blood vessel pixel. We thus obtain a modi�ed image fi in which the optic disk

presents as a single object. In fact, the main structure of the optic disk is present

as a shape in the topographic map representation T representation of fi.

Once again, we can compute a shape attribute A to characterize the connected

components represented by the nodes of the tree of shapes T . As the optic disk

can be modeled by an elliptical shape, we thus use a shape attribute Aell measuring

how much a connected component �ts an elliptical shape. For each node Nk on the

tree of shapes T , Aell is given by

Aell(Nk) = |Nk|/(π × l1 × l2) (6.1)

Where |.| denotes the cardinality, l1 and 2 denotes the length of two principal axis

of the best �tting ellipse for the connected component represented by Nk. The

nodes having a high value of such attribute Aell are good candidates to be the

optic disk. However there may exist many shapes on the tree T which �t very well

the elliptical model. The optic disk corresponds to the one being bright and well

contrast. Besides, the size of the optic disk is normally in a �xed range. It can

not be extremely small nor extremely large. And each eye fundus image is taken

so that the optic disk is near to the center of scene. Bearing in mind these prior

features, the speci�c attribute Aonh used for this task is based on the combination

of these information and the shape attribute Aell given by Eq (6.1) using the fuzzy

theory [Bloch 1996].

This application can be seen as the best node selection on the tree T . The node
Nh having the highest value of attributeAonh is identi�ed as the best candidate. And
its best �tting ellipse is considered as the ONH. In this application, the shape-based

upper leveling helps to make the best candidate of optic disk present on the tree

structure. However, in order not to make the decision immediately, a morphological
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(a) Input color image (b) Green channel (c) Obtained vessels (d) Red channel

(e) Before �ltering (f) Filtered image (g) Detected CC (h) ONH contours

Figure 6.4: Illustration of the complete process of the proposed ONH segmentation

(a-e); (f): Our segmented ONH contour (best �tting ellipse of f) in white compared

with the manually segmented ONH contours in green and blue traced by two experts.

�ltering using the Max-tree T T of the node weighted graph (GT ,Aonh) may give

interesting result fo for further processing. The strategy is to only preserve the

nodes that have a certain depth in T T and that furthermore contain the node Nh.
An example of such an optic nerve head segmentation is shown in Figure 6.4.

The ONH segmented by our approach (white contour in Figure 6.4 (h)) is very close

to the two manual segmentations (red and green contours in Figure 6.4 (h)).

6.4 Results

In this section, we will show some results of applications using those shape-based

�lters introduced in the framework of shape-based morphology (see Section 3.4).

Firstly, in Section 6.4.1, we will illustrate some qualitative results of the retinal

blood vessels segmentation described in Section 6.3.1, which shows that the seg-

mented retinal vessels are quite close to the manual segmentations. Furthermore,

quantitative evaluation on two public datasets of eye fundus images shows that this

�simple� �ltering step achieves a accuracy on par with state-of-the-methods. Then

some qualitative ONH segmentation results will be illustrated in Section 6.4.2, which

shows that the segmented ONH boundaries are very close to the manual segmenta-

tions. The quantitative evaluation using the discrepancy measurement on a public

eye fundus images dataset also con�rms the good performance of the ONH segmen-
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tation method described in Section 6.3.2. Finally, we will present an example of

morphological shapings S compared with the classical threshold-based strategy in

Section 6.4.3.

6.4.1 Blood vessels segmentation in retinal images

We tested the described elongation-based upper leveling in Section 6.3.1

on the database of Digital Retinal Images for Vessel Extraction (DRIVE)

[dri 2013b], [Staal 2004] and on the database of STructured Analysis of the Retina

(STARE) [sta 2013], [Hoover 2000]. DRIVE is a database assembled in the Nether-

lands from a diabetic retinopathy screening program. It includes 40 color fundus

images of 584×565 pixels, captured using a 45◦ �eld-of-view fundus camera. The 40

color images are divided into a training and a test set, both containing 20 images.

For the training images, a single manual segmentation of the vasculature is avail-

able. For the test cases, two manual segmentations are available; one is used as gold

standard, the other one can be used to compare computer generated segmentations

with those of an independent human observer. The complete database contains

seven pathological cases (four on the test set and three on the training set). The

STARE database contains 20 images among which ten images are abnormal. These

retinal images were captured using a TopCon TRV-50 fundus camera at 35◦ FOV,

and digitized to 700× 605 pixels, 8 bits per RGB channel. A manual segmentation

is available for each image of the database. Masks of the eye fundus, derived from

the matched spatial �lter [Hoover 2000], are also available.

Figure 6.5 and 6.6 show four segmentation results respectively from DRIVE

database and STARE database. Qualitatively, most of the blood vessels are correctly

extracted, although some noise at the end of the vessels is also extracted, and some

very thin blood vessels are missed.

Quantitative assessment is based on three performance measurements named

respectively sensitivity, speci�city and accuracy [Staal 2004]. Sensitivity measures

the true positive rate (TPR), speci�city measures the true negative rate (TNR),

accuracy measures the rate of pixels correctly classi�ed. Another performance mea-

surement named kappa values are also used in [Staal 2004] for the DRIVE database.

It is a statistical measure of inter-rater agreement, which measures the agreement

between two raters who each classify N items into C mutually exclusive categories.
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Figure 6.5: Illustration of four segmented blood vessels from the 20 test retinal im-

ages of DRIVE database. Top: Input color retinal images, Bottom: Corresponding

segmented results, Black pixels: true positive; White pixels: true negative; Blue

pixels: false positive; Red pixels: false negative.

Figure 6.6: Illustration of four segmented blood vessels from the 20 test retinal im-

ages of STARE database. Top: Input color retinal images, Bottom: Corresponding

segmented results, Black pixels: true positive; White pixels: true negative; Blue

pixels: false positive; Red pixels: false negative.
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These measurements are de�ned below as:

sensitivity = TPR =
TP

P
=

TP

TP + FN
(6.2)

specificity = TNR =
TN

N
=

TN

TN + FP
(6.3)

accuracy =
TP + TN

TP + TN + FP + FN
(6.4)

kappa =
Pr(a)− Pr(e)

1− Pr(e)
. (6.5)

where TP stands for true positive, FP for false positive, TN for true negative

and FN for false negative. Pr(a) is the relative observed agreement among raters,

and Pr(e) is the hypothetical probability of chance agreement. If the raters are in

complete agreement then kappa = 1. If there is no agreement among the raters

other than what would be expected by chance (as de�ned by Pr(e)), kappa = 0.

A benchmark of di�erent approaches (including ours) is provided in Table 6.1

and Table 6.2. It shows the good performance of our proposed elongation-based up-

per leveling works for both DRIVE database and STARE database. In the case of

DRIVE database, our result is slightly under the best results given by the method of

Mendonça [Mendonca 2006]. Note also that the approaches of Staal [Staal 2004] and

Niemeijer [Niemeijer 2004] are supervised approaches. On the STARE database,

our proposed method performs also very well. It is better than the method of

Mendon�ca [Mendonca 2006]. Both methods are very close to the second human ob-

server. Table 6.3 shows that our method is more robust than others, in the sense that

it performs equivalently on both abnormal and normal images. And to facilitate the

comparison of our results with those presented by Hoover et al. [Hoover 2000], Jiang

et al. [Jiang 2003] and mendonça [Mendonca 2006] in their original papers, we com-

pute the average sensitivity for the false positive fraction (1-speci�city) of the second

hand-labeled image set, and by considering all image pixels (without FOV). The Ta-

ble 6.4 shows the average sensitivity corresponds to a false positive fraction of 0.044,

which was the value reported by Jiant et al [Jiang 2003].

Note that our proposed elongation-based upper leveling is only a �simple� �lter-

ing step, whereas other approaches are more complicated. Besides, our process is not

complete: further post-processing can improve the results. Observe that the main

missing part of retinal blood vessels is the ones which are very thin, a path opening []

applied on the input image and following a skeleton extraction may help to retrieve

those missing vessels being very thin, so improve the quantitative evaluation.
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Method TPR TNR Accuracy Kappa

2nd Expert 0.7761 0.9725 0.9473 (0.0048) 0.7589

Mendonça [Mendonca 2006] 0.7344 0.9764 0.9452 (0.0062) -

Staal [Staal 2004] 0.7193 0.9773 0.9441 (0.0057) 0.7345

Niemeijer [Niemeijer 2004] 0.6793 0.9801 0.9416 (0.0065) 0.7145

Our 0.6924 0.9779 0.9413 (0.0078) 0.7166

Zana [Zana 2001] 0.6696 0.9769 0.9377 (0.0078) 0.6971

Al-Diri [Al-Diri 2009] - - - 0.9258 (0.0126) 0.6716

Jiang [Jiang 2003] 0.6478 0.9625 0.9222 (0.0070) 0.6399

Perez [Marinez-Pérez 1999] 0.7086 0.9496 0.9181 (0.0240) 0.6389

Table 6.1: Benchmark of di�erent blood vessels segmentation approaches on DRIVE

database.

Method TPR TNR Accuracy

2nd Expert 0.8949 0.9390 0.9354 (0.0171)

Jiang [Jiang 2003] - - 0.9513

Our 0.7149 0.9749 0.9471 (0.0114)

Mendonça [Mendonca 2006] 0.6996 0.9730 0.9440 (0.0142)

Hoover [Hoover 2000] 0.6751 0.9567 0.9267 (0.0099)

Table 6.2: Benchmark of di�erent blood vessels segmentation approaches on STARE

database.
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Method Sensitivity Speci�city Accuracy

Normal cases

2nd human observer 0.9646 0.9236 0.9283 (0.0100)

Shape upper-leveling 0.7178 0.9802 0.9493 (0.117)

Mendonça [Mendonca 2006] 0.7258 0.9791 0.9492 (0.0122)

Hoover [Hoover 2000] 0.6766 0.9662 0.9324 (0.0072)

Abnormal cases

2nd human observer 0.0.8252 0.9544 0.9425

Shape upper-leveling 0.7120 0.9696 0.9447 (0.0106)

Mendonça [Mendonca 2006] 0.6733 0.9669 0.9388 (0.0150)

Hoover [Hoover 2000] 0.6736 0.9472 0.9211 (0.0091)

Table 6.3: Benchmark of vessel segmentation methods (STARE images - Normal

versus abnormal cases).

Method Sensitivity

2nd human observer 0.895

Shape upper-leveling 0.830

Mendonça [Mendonca 2006] 0.828

Hoover [Hoover 2000] 0.75

Jiang [Jiang 2003] 0.835

Table 6.4: Benchmark of vessel segmentation methods (STARE images; FPF =

4.4%; no FOV.)
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6.4.2 Optic nerve head (ONH) segmentation

We tested the method for the ONH segmentation described in Section 6.3.2

on the database of Digital Retinal Images for Optic Nerve Segmentation (DRI-

ONS) [dri 2013a], [Carmona 2008]. The database consists of 110 color eye fundus

images of 600×400, belonging to 55 patients with glaucoma (23.1%) and eye hyper-

tension (76.9%) and randomly selected from an eye fundus image base belonging to

the Ophthalmology Service at Miguel Servet Hospital, Saragossa (Spain). 50 images

in the database have di�erent type of defects. And for each image, two manual seg-

mented ONH contours traced by two experts are also available. More details about

the DRIONS database can be found in [dri 2013a].

Figure 6.7 shows some segmentation results of the DRIONS database. Qualita-

tively, except the last image (Figure 6.7 (l)), the ONH are correctly segmented for

the other cases, although the approximate elliptical shapes do not �t very precisely

the manual segmentations at the level of contours.

Quantitative assessment is based on the performance measurement named dis-

crepancy δ [Lowell 2004], [Carmona 2008]. It measures the mean discrepancy be-

tween the points of contour obtained with the segmentation approach and a gold

standard. For each image j, the gold standard is de�ned as the average of the two

manual segmented contours. The discrepancy δj for image j is de�ned by

δj =

∑N
i=1

(
(|mj

i − µ
j
i |)/(σ

j
i + ε)

)
N

(6.6)

Where N is the number of angularly equispaced radial segments, mj
i is the length of

the radius de�ning the i-th point of the ellipse proposed for the image j, µji and σ
j
i

are the mean and typical deviation, respectively, of the lengths of the radii de�ning

the i-th point of the two manual segmented contours for the image j, and ε = 0.5

is a small factor to prevent division by zero where the two experts are in exact

agreement.

Based on the quantitative measurement δ, the segmentation results are divided

into four categories: excellent, good, fair and poor, containing images with discrep-

ancy value up to one, two, �ve, or more. Figure 6.7 illustrates some examples

of ONH contours obtained with our method with di�erent quality on the basis of

discrepancy δ. Note that qualitatively, the segmentation result of Figure 6.7 (g)

(δg = 3.02) is as good as Figure 6.7 (b) (δb = 0.92) and Figure 6.7 (c) (δc = 1.15) or

even better. The reason is that the discrepancy value de�ned in 6.6 is also a function

of inter-observer variability. The greater the experts' variability when tracing the

ONH contour, the smoother the discrepancy value obtained. The two experts get

better agreement for the image Figure 6.7 (g) than the images Figure 6.7 (b) and
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(a) δ = 0.88 (b) δ = 0.92 (c) δ = 1.15

(d) δ = 1.60 (e) δ = 2.22 (f) δ = 2.96

(g) δ = 3.02 (h) δ = 3.40 (i) δ = 4.27

(j) δ = 4.63 (k) δ = 5.04 (l) δ = 7.21

Figure 6.7: Some examples of ONH segmentation obtained with the approach de-

scribed in Section 6.3.2: our segmented ONH in white; and two manual segmenta-

tions in green and blue.
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Carmona [Carmona 2008] 96%

Our method 95.4%

Molina [Molina 2011] 95%

Lowell [Lowell 2004] 80%

Table 6.5: Percentage of images whose discrepancy δ is under 5.

Figure 6.7 (c).

A benchmark of di�erent approaches is shown in Table 6.5. It is based on

the percentage of images whose segmented ONH is at least fair (δ ≤ 5). We

compare our proposed method with 3 other approaches which are considered as

the best approaches tested on the DRIONS database. Our result is very close

to the best one given by the approach of Carmona et al. [Carmona 2008], and is

slightly better than Monlina's [Molina 2011]. it performs much better than Lowell's

method [Lowell 2004].

For visualisation purposes, the ogive of discrepancy is plotted, namely, the num-

ber of images with discrepancy less than a given discrepancy value D. Thus the

number (percentage) of images that �t any given level of accuracy can be read o�

the y-axis. The discrepancy curve is given in Figure 6.8. The comparison of the dis-

crepancy curve obtained with Lowell's method [Lowell 2004] and our method reveals

two di�erent areas with opposite behavior, whose boundary is marked by the value

δ = 2.7. Belows this value, Lowell's results are slightly better than our proposal,

and above this value, our approach performs better. We think the explanation is

that our method approaches the solution using a non deformable ellipse, the local

deformation phase in Lowell's method makes it possible to do a slight deformation

of the ellipse, which make the results approach better the manual segmentations.

However, the discrepancy curve of the second subinterval (2.7, 5) reveals the robust-

ness of our method. Compared with the discrepancy curve obtained with Carmona's

method [Carmona 2008] and Molina's approach [Molina 2011], our method performs

slightly worse for the subinterval where discrepancy δ ≤ 4. We think the explanation

is that the other 3 methods is based on the detection of interesting points around

the ONH contour, and our method is based on the region. So they are more accurate

for the low discrepancy. However, If we only consider the number of images whose

detection results are fair, as shown in Table 6.5, our results are very close to the

best one.

Note that our proposed method is much more simple than the 3 other approaches.

It is a best node selection problem based on a pre-processing using the elongation-
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Our

Lowell

Carmona

Molina

Figure 6.8: Accumulated discrepancy results for our detection method versus Car-

mona et al, Molina et al. and Lowell et al.

based upper leveling. And again, our process is not �complete� in the sense that

further post-processing can improve the results (for example, local deformation of

the best �tting ellipse).

6.4.3 Illustration of shaping

As stated in Section 2.3, when we want to process both upper and lower level

sets, we use as T the topographic map, and the operator such created is called a

morphological shaping S. In both Figure 3.1 and Figure 6.9, we use for attribute A
the circularity. The result of the shaping on Figure 3.1 (a) is shown in Figure 3.1 (g),

and looks indeed better than the one of Figure 3.1 (f). In Figure 6.9, we compare

our extinction-based self dual shaping approach with a variant of the state-of-the-

art thresholding approach [Urbach 2007]. When the threshold of A is low, some

objects do not appear (Figure 6.9 (c)). To be able to get all expected objects, we

have to set a high threshold; however, in this case, too many unwanted objects are

present (Figure 6.9 (d)). With our shaping , all the expected objects can be found,

as depicted in Figure 6.9 (b). The results can be improved by combining some shape

attributes. In Figure 6.9 (e) and Figure 6.9 (f), we use a combination of circularity

and the I/A2 [Urbach 2007], the moment of inertia divided by the square of area.

The combination of shape attributes improves signi�cantly the results. Still, our
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shaping in Figure 6.9 (f) performs much better than the threshold-based strategy

in Figure 6.9 (e).

6.5 Conclusion

Connected operators are �ltering tools that have very good contour preservation

properties and are capable of both low level �ltering and high level object recogni-

tion [Salembier 2009]. The shape-based morphology being an extension of connected

operators is a versatile framework for e�cient shape processing, object segmentation,

and hierarchical image simpli�cation/segmentation. In this chapter, we presented

the aspect of shape �ltering, We tested one of the many shape-based lower/upper

levelings on retinal image analysis. The �rst tested application is the blood vessel

segmentation in retinal images. We used an elongation attribute characterizing long

and thin structures. The quantitative assessments have shown that such a �lter

achieves results almost as good as the second human observer. Nevertheless, the

proposed elongation-based upper leveling is only a �simple� �ltering step, we have

only two parameters which are relatively easy to set up. Other approaches dedicated

for this application are more complicated. The second application is another impor-

tant task in retinal image analysis, the optic nerve head (ONH) segmentation, which

took advantage of the shape-based lower/upper levelings as image pre-processing.

Then the ONH segmentation problem was solved by the best node selection us-

ing a speci�c designed attribute, the best �tting ellipse of the selected connected

component approximates well the ONH. We have also shown that it achieves state-

of-the-art results based on a numerical benchmark. Besides, in both applications,

the processes are not �complete�: Further post-processings can improve the results.

We illustrated also an interesting example of the morphological shapings, where

the proposed shaping �ltered all the unwanted objects while keeping perfectly the

desired bright and dark objects.



164 Chapter 6. Shape �ltering

(a) Input image (b) Shaping 1

(c) Low threshold of A (d) Higher threshold of A

(e) Threshold strategy (f) Shaping 2

Figure 6.9: Comparison of extinction-based shapings with attribute thresholding.

(b-d): Using one shape attribute; (e-f): Using a combination of shape attributes.



Chapter 7

Object segmentation on the shape

spaces

The tree-based shape spaces provide a tremendously reduced searching space for

object segmentation. The shape space can be created by many means of tree-based

image representations described in Section 2.3 to make that most part of meaningful

objects are presented in the tree-based shape space. As described in Section 3.5, once

the shape space is created, we can use the framework of shape-based morphology

to extract those meaningful objects. To achieve this, we need an attribute function

A characterizing the meaningfulness of each node (i.e., object). On the other hand,

Image segmentation can be de�ned as the detection of closed contours surrounding

objects of interest. Given a family of closed curves obtained by some means, a

di�culty is to extract the relevant ones. A classical approach is to de�ne an energy

minimization framework, where interesting contours correspond to local minima of

this energy. Active contours, graph cuts or minimum ratio cuts are instances of

such approaches. In this chapter, we propose a novel e�cient ratio-cut estimator

which is both context-based and can be interpreted as an active contour. This

ratio-cut estimator is used as the attribute function A in the framework of shape-

based morphology. In this chapter, as a �rst example, we consider the shape space

given by the topographic map representation. The estimator can be computed

incrementally in an e�cient fashion relying on this shape space. Experimental

results on synthetic and real images demonstrate the robustness and usefulness of

the proposed context-based energy estimator, and that the shape-based morphology

is a versatile framework well suited for object segmentation tasks.

7.1 Introduction

In natural images, signi�cant contours are usually smooth and have a good contrast.

Following the seminal work of Mumford and Shah [Mumford 1989], �nding contours

is often tackled thanks to an energy-based approach, as a compromise between some

internal force (regularity) and some image-driven force (image contrast along the

contours, data attachment, etc.) Among the most notable methods in this class, the
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snakes approach [Kass 1988] �nds a local optimum of the energy, while Chan-Vese

approach [Chan 2001] �nds a global optimum.

It can be observed in practice that local optima are usually too local, in the

sense that only information along the curve are taken into account. Conversely, a

global optimum takes the whole image into account and some details can be found

di�cult to be included in the �nal result. Let us also mention that the search space

for the optimal curve is quite large and depends on many parameters.

The main contribution of this chapter is the design of a ratio-cut energy evalu-

ator that takes into account some context along the curve, by looking at a couple

of regions around it. This estimator aims at assessing the possibility that the curve

under scrutiny is the contour of some object. It thus can be used to choose, in a set

of closed curves, for the ones that best represent the objects of the scene. By ap-

plying the aspect of object detection/segmentation in the framework of shape-based

morphology, it is easy to �nd the objects: they are the minima of the estimator,

when compared to their children and parent. Besides, the connected �ltering in the

shape space which is the basic idea of the framework of shape-based morphology

helps to �lter those meaningless local minima, so does the meaningless objects.

Recently, many authors (see for example [Caselles 1999]) claim that meaningful

contours coincide with segments of the level lines of the image. The inclusion rela-

tionship of these level lines yields the topographic map [Monasse 2000b], a complete

representation of the image that is invariant to changes of contrast. In this chapter,

we illustrate the soundness of the proposed estimator as well as the aspect of object

detection/segmentation of the framework of shape-based morphology relying on the

shape space given by the topographic map representation.

There exists several works that use the topographic map for image simpli�cation

and segmentation. In [Ballester 2007], the authors propose to remove any level lines

that, when removed, decrease the Mumford-Shah energy. In [Cardelino 2006], the

authors remove the level lines that enclose a region similar to its parent w.r.t. an

histogram-based distance. They then select interesting regions by identifying parts

of the tree having an homogeneous histogram. Both methods require an information

update after each removal of a non-relevant level line; such an update mechanism is

a major bottleneck of those methods. In [Pardo 2002], the author proposes a seg-

mentation algorithm that selects the perceptible level lines matching some criteria:

number of T-junctions, compactness, and contrast.

Papers [Desolneux 2001] and [Cao 2005] are the closest ones to what we propose

here. The authors de�ne themeaningfulness of a given level line using the a contrario

model. Only the smallest gradient along a level line and its length are used to

estimate the meaningfulness of this line, based on the computation of a number
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of false alarms (we will call this method �NFA� in the following). This makes their

estimator sensitive to noise. In [Cao 2005], they improve the method by introducing

a multi-scale approach, less sensitive to noise. In this chapter, our estimator is scale-

invariant and designed from snake-like principles. We use the average of curvature

along the curve as the internal force. A key contribution is the image force we

propose, which integrates some contextual information. Eventually, we show that

our estimator is robust both to noise and blur. Another advantage of our method

is its e�ciency for it has a quasi-linear time complexity.

The rest of this chapter is organized as follows. In Section 7.2, we will give a

short review about the snake/active contour models [Kass 1988] based on which our

context-based energy estimator (see Section 7.3) is proposed. Then in Section 7.4,

we will detail how to make use of the framework of shape-based morphology tak-

ing the context-based energy estimator as the attribute function A, the underlying
shape space is given by the topographic map. In Section 7.5, we will show some

experimental results of object segmentation on synthetic and real images, and a

hierarchical version of the object segmentation will also be illustrated. Finally we

conclude in Section 7.6.

7.2 Related work

Some related works about the object segmentation relying on the use of shape space

are already shortly reviewed in Section 2.6 and Section 7.1. So in this section, we

focus on the snake/active contour models based on which the proposed context-

based energy estimator is formed.

7.2.1 Snake/active contour models

Snake or active contour model is an energy minimizing, deformable spline in�u-

enced by constraint and image forces that pull it towards object boundaries. It

has been widely used for object segmentation. Snake is an �active� model as

it always minimize its energy functional and therefore exhibits dynamic behav-

ior. Since its original introduction by Kass et al. [Kass 1988], many active con-

tour models have been proposed, such as the geodesic active contours proposed by

Caselles et al. [Caselles 1997], the active contours with edges proposed by Chan and

Vese [Chan 2001]. We review only the original active contour model and the active

contours without edges.

1) Classical active contour
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The idea of snakes or active contours [Kass 1988] is to evolve a curve under

the in�uence of internal forces coming from the curve itself and of external forces

computed from the input image or added by the user to impose some constraints.

Those forces are mapped into the respective terms of an energy

Elocal = αEsnk
int + Esnk

ext + βEcon (7.1)

whose minimization drives the curve evolution. α and β are two positive parameters.

Let C(s) : [0, 1] → R2 be a parameterized curve. Then the internal force Esnk
int

can be written

Esnk
int = α1

∫ 1

0
|C ′(s)|2ds+ α2

∫ 1

0
|C ′′(s)|ds. (7.2)

The internal force controls the smoothness of the contour. In the classical

snakes [Kass 1988], the external force relies usually on an edge-detector depend-

ing on the gradient of the image f , that stops the evolving curve on the boundary

of desired object. The external force is usually given by

Esnk
ext = −

∫ 1

0
|∇f(C(s))|2ds. (7.3)

The constraint force can be as simple as the length of the curve denoted by

Length(C(s)). Consequently, the energy to be minimized in classical active model

is given by

Elocal = α′1

∫ 1

0
|C ′(s)|2ds+α′2

∫ 1

0
|C ′′(s)|ds−

∫ 1

0
|∇f(C(s))|2ds+ βLength(C(s)).

(7.4)

Observe that, by minimizing the energy in Eq (7.4), we are trying to locate

the curve at the points of maxima |∇f |, performing as an edge-detector, while

maintaining a smoothness in the curve and satisfying the constraints imposed by

the user.

In problem of curve evolution, the level set method and in particular the motion

by mean curvature of Osher and Sethian [Osher 1988] is usually used to solve the

energy minimization problem of Eq (7.4).

2) Active contour without edges

The classic active contour models reviewed as above segment objects whose

boundaries are de�ned by gradient. In [Chan 2001], Chan and Vese introduced an

active contour model without edges that segments objects whose boundaries are not

necessary de�ned by gradient. It relies on techniques of curve evolution, Mumford-

Shah functional and level sets.
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For a given evolving curve C in the image domain Ω, which is the boundary

of an open subset U ⊂ Ω (i.e., C = ∂U), let inside(C) denotes the region U , and

outside(C) denotes the region Ω\Ū . The energy functional to be minimized in the

model of active contour without edges is given by

F (c1, c2, C) =µArea(inside(C)) + νLength(C)

+ λ1

∫
inside(C)

|f(x, y)− c1|2dxdy

+ λ2

∫
outside(C)

|f(x, y)− c2|2dxdy, (7.5)

where Area(inside(C)) denotes the area of the region inside the curve C (i.e., the

subset U), c1 and c2 are two constants depending on the evolving curve C being

the average of f inside C and respectively outside of C given by Eq (5.3), and

µ ≥ 0, ν ≥ 0, λ1 > 0, λ2 > 0 are �xed parameters. Usually µ is set to 0, λ1 and λ2

is set to λ1 = λ2 = 1. In this case the energy functional F (c1, c2, C) in Eq (7.5)

becomes

F (c1, c2, C) = νLength(C)+

∫
inside(C)

|f(x, y)−c1|2dxdy+

∫
outside(C)

|f(x, y)−c2|2dxdy.

(7.6)

The energy functional F (c1, c2, C) in Eq (7.6) is related with the piecewise-

constant Mumford-Shah functional in Eq (5.4). In fact, this energy functional of

active contour without edges can be formulated by the piecewise-constant Mumford-

Shah functional taking two regions: the �region� inside the curve C and the �region�

outside the curve C. Note however that the notion of �region� used here is not

necessary a connected component due to the fact that the evolving curve C might

be composed of several disjoint closed contours.

This particular case of the piecewise-constant Mumford-Shah functional mini-

mization can also be formulated and solved using the level set method [Osher 1988].

Let us point out again that the level set methods have solid theoretical foundations,

yet they are often computational expensive.

7.3 Context-based energy estimator

We will detail the proposed context-based energy estimator in this section. It is

inspired from the active contour model. The classic active model drives the curve

evolution by minimizing a local energy written in term of Eq (7.1), in which the

external force is usually given by an edge-detector depending on the gradient. This

energy functional is too local, and it segments objects whose boundaries are de�ned

by gradient. Whereas, the active contour without edges drives the curve evolution
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by minimizing a global energy functional de�ned in Eq (7.5) and Eq (7.6). The

context-based energy estimator is a contextual energy Econtext which is based on

the classic active contour model and the active contour without edges. This energy

estimator Econtext can also be written as Eq (7.1) given as below:

Econtext = αEint + Eext + βEcon. (7.7)

Di�erent from the classic active contour model, the external force Eext is in-

spired from the model of active contour without edges. We compute an indicator

sharing the same idea of applying the active contour without edges on a contex-

tual patch around a closed contour. It is in fact related to the popular Fisher's

test [Phillips 1989]. So the proposed context-based energy estimator is neither too

local nor too global, which forms its main contribution. Let us detail each term in

Eq (7.7) for a discretized closed contour ∂τ of a region τ in the following sections.

The discretized closed contour is composed of a set of pixel edges e (i.e., the 1-faces)

and 0-faces as shown in Figure 3.12.

7.3.1 Internal energy Eint

The internal energy controls the smoothness of the contour which is usually mea-

sured by the curvature along the contour. For a discretized curve ∂τ , the internal

force can be given by

Eint =
∑
e∈∂τ
|curv(f)(e)|, (7.8)

Where curv(f) is the scalar curvature of image f de�ned on each point x0 ∈
Ω [Ciomaga 2010], it is given by

curv(f)(x0) =
fxxf

2
y − 2fxyfxfy + fyyf

2
x

(f2
x + f2

y )3/2
(x0). (7.9)

In our case, the region contour is materialized by the pixel edge lying between

points (i.e., 1-faces) and 0-faces. To compute the measurement based on region

contour, we only consider the pixel edges, i.e., 1-faces. We adapt the computation

of those di�erentials in Eq (7.9) to the pixel edges lying between points. For a

horizontal pixel edge, e.g., the blue one in Figure 7.1), those di�erentials are given

by

fx = f(x2,1)− f(x1,1) (7.10)

fxx = 1/2× (f(x3,1)− f(x2,1)− f(x1,1) + f(x0,1)) (7.11)

fy = 1/4× (f(x2,2) + f(x1,2)− f(x2,0)− f(x1,0)) (7.12)

fyy = 1/2× (f(x1,2) + f(x2,2) + f(x1,0) + f(x2,0))− f(x1,1)− f(x2,1)(7.13)

fxy = 1/2× (f(x2,2) + f(x1,0)− f(x1,2)− f(x2,0)). (7.14)
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Figure 7.1: Di�erential operators for the horizontal blue pixel edge. The mask for

those di�erentials in Eq (7.9) is depicted on the right side.

For the vertical pixel edges, the di�erentials can be computed symmetrically.

Finally, we also propose to modify the internal energy from the snakes approach:

it is normalized to make it invariant to scale. The average of curvature along the

region contour Aκ de�ned in Eq (5.28) is used instead.

7.3.2 External energy Eext

The curvature Aκ and the gradient |∇| is local to the curve. The active contour

without edges proposed in [Chan 2001] minimizes a global energy which is similar

with the piecewise-constant Mumford-Shah functional based on the segmentation

error de�ned for a Given a region R by

V (f,R) =
∑
p∈R

(f(p)− f(R))2, (7.15)

where f(R) is the mean value of u over R.
We propose to replace the external energy in the classical active contour model

by a context one, inspired by the segmentation error (see Eq (7.15)) term in energy

functional for active contour without edges. For that, given a curve ∂τ , we de�ne

the regions Rεin(∂τ) and Rεout(∂τ) as the sets of points of maximal distance ε from

∂τ , respectively inside and outside of the curve. Those two regions are illustrated

by Figure 7.2 (b). The proposed external energy Eext is:

Eext(f, ∂τ) =
V
(
f, Rεin(∂τ)

)
+ V

(
f, Rεout(∂τ)

)
V
(
f, Rεin(∂τ) ∪Rεout(∂τ)

) . (7.16)
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This energy is low when the segmentation error is much lower for two classes than

for one class, meaning that the curve is an object contour. Thanks to the numerator,

it is also inversely proportional to the object contrast. In fact this external energy

is related to the popular Fisher's test [Phillips 1989] based on the Fisher distance

given by
(n1 + n2)(µ1 − µ2)2

n1σ2
1 + n2σ2

2

=
nσ2

n1σ2
1 + n2σ2

2

− 1, (7.17)

where n1, n2 is the number of pixels inside the interior region Rεin(∂τ) and respec-

tively the exterior region Rεout(∂τ), σ2
1, σ

2
2 denote the variance in those two regions,

and n = n1 + n2 is the number of pixels of the mixture region, σ2 is the variance

inside the mixture region. In fact, the external energy Eext de�ned in Eq (7.16) can

be written as

Eext(f, ∂τ) =
n1σ

2
1 + n2σ

2
2

nσ2
, (7.18)

which corresponds to the inverse of the �rst term in Fisher's test given by Eq (7.17).

Let us also remark that this contextual energy introduces some spatial information

that is not naturally present in any of the shape space given by a tree-structure

representation for a set of closed curves in an image.

7.3.3 Snake-like energy estimator

For the purpose of meaningful object segmentation, we add the constraint energy

that aims at penalizing too small objects:

Econ(f, ∂τ) = 1/Length(∂τ). (7.19)

Consequently, the proposed context-based energy estimator is �nally given by

Econtext(f, ∂τ) =α

∑
e∈∂τ |curv(f)(e)|
Length(∂τ)

+
V
(
f, Rεin(∂τ)

)
+ V

(
f, Rεout(∂τ)

)
V
(
f, Rεin(∂τ) ∪Rεout(∂τ)

)
+ β/Length(∂τ). (7.20)

In our experiments we take α = 60, β = 2, and ε = 5.

7.4 Application on the topographic map

The context-based energy estimator Econtext described in Section 7.3 provides a

good manner measuring the possibility of the presence of a object. Moreover, it

will be shown in Section 7.4.2 that this energy estimator can be computed e�-

ciently upon the shape space. All these motivates us to use it as an attribute
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function Ao in the framework of shape-based morphology, whose aspect of object

detection/segmentation provides an e�cient object segmentation scheme. As a �rst

example, we use the shape space given by the topographic map representation in

this chapter. The overview of the method will be described in Section 7.4.1. The

connected �ltering in the shape space to remove those meaningless objects will be

detailed in Section 7.4.3. Finally, the hierarchical version of object segmentation

will be discussed in Section 7.4.4.

7.4.1 Overview of the method

The method for object segmentation relying on the framework of shape-based mor-

phology we propose is composed of four steps.

1. First the contents of the input image is transformed to a tree-based

shape space. Many tree-based representations of an image do exist (e.g.

min/max tree, hierarchies, . . .). In this chapter, we use the topographic

map [Monasse 2000b].

2. Second our context-based energy estimator is computed for each node of this

tree as the attribute function Ao.

3. Third connected �ltering in the shape space weighted by the attribute function

A. Morphological closing removes meaningless minima, so does the meaning-

less objects. We identify the resistant signi�cant local minima of the energy.

Each node corresponding to such a minimum is a component whose contour

is the one of an object.

4. Last based on the idea that resistant minima represent the meaningful objects.

We weight each minimum (so the corresponding objects) by the �ltering force

at which this minimum vanishes, which leads to a saliency map representing

a hierarchical object segmentation.

7.4.2 Making the method e�cient

For all four steps of the method, we need to deal not only with image pixels but

also with contours. We thus rely on a representation that handle both pixels and

pixel edges. In other words, we materialize the elements what lie in-between pixels,

as depicted in Figure 7.2.

Tree Computation. To compute the topographic map, we use an algo-

rithm [Géraud 2013] very similar to the one described in [Berger 2007]. A �rst

pass sorts the pixels by a propagation process starting from the image boundary.
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union  and update

(a) (b)

Figure 7.2: (a): Updating contour information when a union between two compo-

nents (yellow and blue) occurs thanks to a pixel (gray). (b): Regional context of a

level line (red) is the inner (dark gray) and outer (light gray) regions.

Then a second pass, in reverse order, build the tree while performing the union-�nd

algorithm. This algorithm has a quasi-linear time complexity when pixel values have

a low quantization (see Section 9.1 for more details).

Contours Information Computation. During the union-�nd pass, contour in-

formation can be e�ciently updated. As depicted in Figure 7.2 (a), when performing

a union of two components (resp. yellow and blue) due to adding a pixel (gray), it

is easy to know how to update the contour. More algorithmic details can be found

in Section 9.2.2.

Regions Information Computation. In order to calculate the regions informa-

tion e�ciently, we approximate the inner region and the outer region of each level

line by only taking into account the pixels which are aligned perpendicularly to

each edge of the level line. Note that some pixels may be counted several times. An

example with ε = 2 is given in Figure 7.2 (b). The e�cient algorithm dealing with

the context information will be presented in Section 9.2.3.

Energy Computation. All energy terms can be computed incrementally during

the union-�nd pass since they can be decomposed into linear (additive and subtrac-

tive) parts. The curvature, as a linear �lter, is computed for every pixel edges in a

preliminary step.
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7.4.3 Energy �ltering in shape spaces

As illustrated in Figure 3.9 and depicted in Section 3.5, although an improvement

of object evidence is achieved by the context-based energy estimator compared with

the classic active contour model, there are still too many local minima in the shape

space weighted by the attribute function Ao given by

Ao = Econtext . (7.21)

A connected �ltering step in the shape space is required to remove those meaningless

local minima. We thus construct a Min-tree representation of the tree-based shape

space ST to implement a connected �ltering known as minima killer. The second

attribute function AA based on which perform the connected �ltering in the shape

space is can be the height of Ao in Eq (7.21) and the total variation described in

Section 3.2.2. In the �ltered attribute function A′o, some local minima may contain

several nodes in the shape space, we select the node having the smallest Ao as the
representative node Nr, the connected component represented by Nr is segmented

as the meaningful object for those local minima. Note that with this method, the

meaningful objects presented in the same branch of a tree representation can be all

extracted.

7.4.4 Hierarchical object segmentation

Following the idea of object segmentation which says that signi�cant local minima

of attribute Ao in the shape space correspond to meaningful objects, so for a given

local minimal node Nm, its importance compared with its neighbors in the shape

space measures the signi�cance of the objects represented by that node Nm. By

augmenting the �ltering force in the shape space, more and more local minima

vanish, in this sense, the resistance of being �ltered by the connected �ltering in

the shape space based on a second attribute function AA can be used to produce a

soft object segmentation decision. This resistance is usually known as the extinction

value de�ned on the local minima [Vachier 1995] (see Section 3.2.3 for more details).

By weighting this extinction value of each local minimal node Nm to the region

contour ∂Nm, we obtain a saliency map that represent a soft object segmentation

result corresponding to every possible �ltering force applied in the shape space. Each

threshold of this map produces an object segmentation result with certain �ltering

force. This hierarchical decision is depicted in Section 3.6.
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7.5 Results

In this section, we will show some results about the aspect of object detec-

tion/segmentation in the framework of shape-based morphology. The attribute

function Ao used is the context-based energy estimator described in Section 7.3.

We will begin with in Section 7.5.1 a illustration of this attribute function Ao com-

pared with the classical snake energy [Kass 1988] and the NFA [Cao 2005]. Then in

Section 7.5.2, we will compare the proposed method with several related approaches

on a synthetic image, which shows the usefulness of our method. Somme illustra-

tions of the proposed on natural images will be shown in Section 7.5.3. Finally, we

will shown some hierarchical object segmentation results in Section 7.5.4.

7.5.1 Energy estimator evaluation

Figure 7.3 illustrates an evolution of the proposed context-based energy estimator

along a branch of the topographic map. In this Figure, one can see that the energy

that we have de�ned (the blue curve) is a function that evolves rather smoothly

upon the topographic map from a node to its parent (from left, a leaf, to right,

the root node). Compared with the classical snake energy (the green curve), the

context-based energy estimator de�ned by replacing the gradient energy Esnk
ext with

the context-based indicator dramatically improves the evidence of an object pres-

ence. The NFA is also shown in this Figure (the orange curve), it does not evolve

regularly enough, because the NFA approach [Cao 2005] is sensitive to noise since

the method relies on the minimum value of contrast along boundaries. As a conse-

quence, selecting relevant minima is hazardous and objects are not well located; see

Figures 7.3 and 7.4 (b). That con�rms the importance of taking into account some

regional information.

7.5.2 Comparison on a synthetic image

The results obtained by our method on a synthetic image are shown in Figure 7.4 (f)

and they are compared to the ones of several related approaches.

The result of NFA approach [Cao 2005] is shown in Figures 7.4 (b). The contours

are not precisely located due to its sensitivity to noise. A quantitative error com-

parison between NFA and our method is given in Figure 7.5 to depict the robustness

to noise and blur of both methods.

Figure 7.4 (c) is the result obtained by �active contour without

edges� [Chan 2001], with many circles as initial contours; the bottom object is

missed since it is too similar to the background. That problem comes from the
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Figure 7.3: Energy estimator on a set of curves of an image, ordered by inclusion;

classical snake energy is depicted in green, our proposed energy is in blue, and NFA

is in orange. (b) and (c): the curves corresponding to signi�cant energy minima.

use of a global energy: such an object is not contrasted enough w.r.t. the rest of

the image.

The approach of Ballester et al. [Ballester 2007] relying on Mumford-Shah func-

tional gives pretty good results; see Figure 7.4 (d). Unfortunately there is a false

object, the triangle boundary, that does not disappear when increasing the regular-

ization strength parameter λ; see Figure 7.4 (e). Instead of that, an actual object

disappears.

7.5.3 Some illustrations on natural images

Figure 7.6 presents the results of our method on two natural images. On the left

image, the three vehicles are successfully identi�ed but the roof of one car is missed

since it is very similar to the background. On the satellite image, the buildings and

their shadows are well segmented.

We have implemented the proposed method 1 using our C++ image processing

library [Levillain 2010], available on the Internet as free software. Processing a

512×512 pixels image takes less than 0.5 second on a regular PC station.

7.5.4 Hierarchical object segmentation

The saliency maps using the extinction value for the images in Figure 7.6 are illus-

trated in Figure 7.7. The saliency map represents a hierarchical object segmentation,
1
Demo available on http://olena.lrde.epita.fr/ICIP2012

http://olena.lrde.epita.fr/ICIP2012
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(a) Input image (b) NFA (c) Chan-Vese

(d) Ballester, λ=2k (e) Ballester, λ=3k (f) Our method

Figure 7.4: Comparison with three other methods.
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Figure 7.5: Evolution of number of falsely segmented pixels (ordinate) w.r.t. in-

creasing noise and blur (abscissa) for the synthetic image in the Figure 7.4(a); NFA

error evolution is depicted in orange and our method error in blue.
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Figure 7.6: Results on natural images. Left column: input images; Right column:

Segmented objects.

Figure 7.7: Inversed saliency map representing hierarchical object segmentation.
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thresholding it with certain value can give a segmentation result shown in Figure 7.6.

7.6 Conclusion

This chapter presented an object detection/segmentation approach using the frame-

work of shape-based morphology. A major contribution of this chapter is a new

energy functional, well-suited to characterize object contours. We have shown that

taking into account a regional context, so that the energy is neither too local nor

global, improves both the relevance and robustness of object detection, as compared

to three state-of-the-art approaches. We have also shown that the segmentation

scheme relying on the framework of shape-based morphology has a quasi-linear time

complexity. Moreover, it provides a soft object segmentation result via the saliency

map. A major perspective of our work is to demonstrate its usefulness with other

tree-based representations, to extend it to color and, more generally, multi-valued

images.



Chapter 8

Extending constrained

connectivity

For all the above chapters in Part III about the applications, the underlying shape

spaces are given by threshold decompositions based trees, i.e., the morphological

trees including Min-tree, Max-tree, and the topographic map. Each cut of these

trees gives a subset of the image domain Ω. In this chapter, we propose an applica-

tion relying on the shape space given by the hierarchy of segmentations whose cut

results in a partition of Ω. It has been show in many works that the hierarchies are

a powerful tool for image segmentation, they provide a multi-scale representation

which allows to design robust and fast algorithms. In this chapter, we focus on the

aspect of hierarchy transformation of the framework of shape-based morphology. As

a �rst example, we work on the shape space given by the α-tree, known also as the

hierarchy of constrained connectivity, or quasi-�at zones, which has been shown e�-

cient for hierarchical image partitioning and simpli�cation. What we propose can be

seen as an extension of the constrained connectivity by transforming the α-tree into

another hierarchy of segmentations represented by a saliency map. Experiments on

the dataset of BSDS500 show that this later saliency map might better represent

the content of the input image, which demonstrates the usefulness of the hierarchy

transformation aspect in the framework of shape-based morphology.

8.1 Introduction

Image segmentation is one of the oldest and most challenging problem in image

processing. Given an image f , even for a human observer, it is hard to determine a

unique meaningful segmentation of f , and it is even harder to establish consensus

between di�erent observers. Indeed, as shown in the Berkeley Segmentation Data

Set and Benchmarks 500 (BSDS500) [Arbelaez 2011], for each image, the ground

truths drawn by di�erent observers are usually di�erent. It is harder to say which

single segmentation is better. The image segmentation is a usually low level task. As

remarked by Guigues et al. in [Guigues 2006], a low level segmentation tool should

remain scale uncommited, because the structures which can be useful to high level
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task can have arbitrary size. A segmentation should output a multi-scale description

of the image f . Higher level information, such as �nding a unique partition of

the image, could be achieved afterwards by introducing additional criterion or by

manually inspecting the multi-scale representation. An usual approach to overcome

the di�culty of �nding a unique meaningful partition, and to satisfy the multi-scale

property is to compute a hierarchy of segmentations instead of a single one.

There exist many methods for building a hierarchical segmentation. They can be

divided into three classes: bottom-up, top-down or split-and-merge. The bottom-up

approaches are usually based on merging algorithms which share three basic ingre-

dients: a region model, a region criterion, and a merging order. Starting from a �ne

initial partition, the regions merge with the adjacent regions consecutively which

forms a partition coarser and coarser, until the whole image domain is considered as

a single region. The binary partition tree (BPT) reviewed in Section 2.3.3 and the

α-tree reviewed in Section 2.3.4 are such instances. The quadtree reviewed in Sec-

tion 2.3.5 is an example of top-down or split-and-merge approach. A recent review of

the approaches of building hierarchies of segmentations can be found in [Mar�l 2006]

and [Soille 2008].

A useful representation of hierarchical segmentations was originally introduced

in [Najman 1996] under the name of saliency map, and it is also popularized under

the name of ultrametric contour map recently. This representation of hierarchies has

been used by several authors, for example for visualization purposes [Guigues 2006],

or for hierarchies comparison [Arbeláez 2006b, Arbelaez 2011]. Besides, its has been

shown in [Najman 2011] that any hierarchical segmentation, i.e. any saliency map

is equivalent to a ultrametric watershed, which provides an e�cient algorithm based

on the scheme of watershed algorithm to compute the whole hierarchy.

A hierarchy of segmentations encodes a set of segmentations from �ne to coarse.

Given an image f and two associated hierarchies H1 and H2, it is not trivial to judge

which hierarchy is better. In fact, this question leads to a more basic and important

question: how to cut the hierarchy to obtain meaningful partitions, bearing in mind

that a hierarchy H generates a subset of all the possible partitions of image f . Let

us denote Part(H) as all the possible partitions by cutting the hierarchy H, then

we have

Part(H) ⊂ Part(Ω). (8.1)

The most simple approach consists in cutting the hierarchy based on the height

of nodes in H, in other word, the hierarchy H is seen as a hierarchy indexed

with the height that can be represented by saliency map M based on the height.

There exist also several works that cut the hierarchy H �optimally� subordinated

to some conditions, such as optimal energy minimization (the work of Guigues et
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al. [Guigues 2006] and Serra and Kiran [Serra 2013, Kiran 2014] are such instances),

or a simple condition as the global range ω used in the hierarchy of constrained con-

nectivity [Soille 2008]. These �optimal� partitions corresponding to partitions ob-

tained by thresholding an associated saliency mapM denoted as Part(M). Then

we have

Part(M) ⊂ Part(H) ⊂ Part(Ω), (8.2)

which means that those existing methods can be seen as a hierarchy index modi�-

cation method. The underlying hierarchy structure remains intact.

With these �optimal� partitions extracted from a hierarchy H, we are now able

to decide which hierarchy is better if the ground truth(s) is (are) available. We

compute the distance of each partition P ∈ Part(M) to the ground truth(s), and

the best distance is used to compare two hierarchies H1 and H2. Many measure-

ments of distance based on region and based on contour are available and reviewed

in [Arbelaez 2011].

In this chapter, we propose an application of the hierarchy transformation as-

pect (see Section 3.6) in the framework of shape-based morphology. As shown in

Figure 3.13, the partitions obtained by thresholding the new saliency map using

extinction valueME might be di�erent from any partition given by the initial hier-

archy H, which means

∃P ∈ Part(ME) such that P ∈ Part(Ω),P /∈ Part(H). (8.3)

Consequently, the scheme of hierarchy transformation described in Section 3.6 does

not only modify the index of the input hierarchy H, but also modi�es the structures

of H. This might give interesting results in some cases. This new saliency map

ME relies on the extinction value that measures the importance of each interesting

region compared with its neighbor regions in the hierarchy H. In this chapter, as a

�rst example, we set the input hierarchy as the α-tree, which means in the scheme

of shape-based morphology T = α-tree. From a algorithmic point of view, the use

of the hierarchy of constrained connectivity in [Soille 2008] is using the local range α

or global range ω as the attribute function A being increasing attribute. Whereas,

we propose to use an attribute function A (e.g., the context-based energy estimator

described in Section 7.3) measuring the meaningfulness of each region in H. This

attribute function A is usually of type non-increasing. The saliency map obtained

by the hierarchy transformation described in Section 3.6 represents a new hierarchy

of segmentation being di�erent from the input hierarchy H. In this sense, This

application can be seen as an extension of the hierarchy of constrained connectivity.

Experimental results on the dataset of BSDS500 demonstrates the usefulness of the

hierarchy transformation aspect given by the framework of shape-based morphology.
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The rest of this chapter is organized as follows. In Section 8.2, we will give a

short review of the works related to the the minimum spanning tree (MST) and

α-tree which can be seen as the Min-tree of MST. Then in Section 8.3, we will de-

tail how to extend the constrained connectivity with the framework of shape-based

morphology using an attribute function Af inspired from the work of Felzenszwalb

and Huttenlocher in [Felzenszwalb 2004]. In Section 8.4, we will show some experi-

mental results applied on the dataset of BSDS500. The qualitative and quantitative

results demonstrates the usefulness of the proposed method. Finally we conclude in

Section 8.5.

8.2 Related work

In this section, we will review several works related to a widely used structure in

image processing: the Minimum Spanning Tree (MST) reviewed in Section 2.3.6.

Firstly, we will review in Section 8.2.1 the work of Najman et al. in [Najman 2013]

which states that that α-tree reviewed in Section 2.3.4 is equivalent to the Min-

tree of MST in the algorithmic view. Then in Section 8.2.2, we will review an

popular e�cient image segmentation method relying on MST [Felzenszwalb 2004].

In Section 8.2.3, a recent work that propose a hierarchical version of the method

in [Felzenszwalb 2004] will be presented.

8.2.1 Another point of view of α-tree

As reviewed in Section 2.3.4, the α-tree, known also as the hierarchy of quasi-

�at zones, or constrained connectivity is based on the notion of α-connectivity de-

�ned by Eq (2.9). This notion of α-connectivity was originally proposed by Soille

in [Soille 2008], and it has been shown e�cient for hierarchical image partitioning

and simpli�cation. However, the algorithm published in [Soille 2008] only computes

one level of the hierarchy which corresponds to a cut of the hierarchy based on the lo-

cal range α or the global range ω (see Section 2.3.4, [Soille 2008], [Ouzounis 2011a]

and [Ouzounis 2012b] for more details). A �rst algorithm computing the whole

hierarchy was proposed in [Najman 2011] relying on the Min-tree of the edge-

weighted graph (G,Fe). Recently, a similar algorithm having a complexity lower

the one proposed in [Najman 2011] and being more memory e�cient was proposed

in [Najman 2013]. We will detail this algorithm in the following.

The algorithm proposed in [Najman 2013] relies on a tree structure called the

binary partition tree by altitude ordering QBT while computing the MST on an

edge-weighted graph (G,Fe). The main idea of QBT is the following: initially, each

vertex is considered as a node represented by the leaves of QBT . During the MST
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Figure 8.1: A simple process for obtaining QBT [Najman 2013], a binary tree pro-

viding a strict total order relation on the edges of the MST.

construction in Kruskal algorithm [Kruskal 1956], each time an edge {x, y} is put
into the MST, i.e. each time a union is made, we create a new node whose children

are the two disjoint sets containing x and y. This added node becomes the canonical

element of the union of these two points. An example of QBT is shown in Figure 8.1.

This binary partition tree by altitude ordering QBT can be constructed e�ciently

based on the union-�nd process after increasing sorting of the edges in the edge-

weighted graph (G,Fe). It is similar with the algorithm of the Min-tree construction

which will be described in Section 9.1. In fact, it is equivalent to the Min-tree

constructed on the edges without canonization. The edges of QBT (i.e., the nodes

which do not lie on the leaves of QBT ) forms the MST. As shown in [Najman 2013],

a post-processing of canonization of QBT by grouping the neighboring nodes (i.e.,

edges in (G,Fe)) in QBT with the same weight is applied, and the output of this

post-processing is a tree structure in which each node represents a α-connected

component. In fact, the output tree is the α-tree, the QBT construction along with
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the canonization process is a Min-tree of the MST (see the Min-tree algorithm in

Section 9.1). Consequently, in a algorithmic point of view, the α-tree is equivalent

to a Min-tree of the MST.

8.2.2 E�cient graph-based image segmentation relying on MST

In [Felzenszwalb 2004], Felzenszwalb and Huttenlocher proposed an e�cient graph-

based image segmentation approach relying on the MST. The basic idea of the

method is to merge regions linked by the edges belongs to the MST. To de�ne the

merging criterion, they introduced two measurements: the internal di�erence mea-

suring the intra-dissimilarity and the di�erence between two components measuring

the inter-dissimilarity.

For a connected component X ⊆ V , the internal di�erence Int(X) is de�ned as

the largest weight in the MST of the component, MST (X,E). That is

Int(X) = max
e∈MST (X,E)

Fe(e). (8.4)

The di�erence between two connected components X,Y ⊆ V , Diff(X,Y ) is

de�ned as the minimum weight edge that connects the two components. It is given

by

Diff(X,Y ) = min
vi∈X,vj∈Y,(vi,vj)∈E

Fe(vi, vj). (8.5)

If there is no edge connecting X and Y , we set Diff(X,Y ) =∞.

With the de�nition of Int(X) andDiff(X,Y ), the merging criterion is described

as follows: Two regions X and Y are merged if

Diff(X,Y ) ≤ min{Int(X) +
k

|X|
, Int(Y ) +

k

|Y |
}, (8.6)

where, | · | denotes the area, and k is some constant parameter. That is for small

components, a stronger evidence for a boundary is required. In other words, a large

k favorites the merging of small regions.

The algorithm proposed in [Felzenszwalb 2004] can be sketched as follows:

Firstly, compute the MST on a edge-weighted graph (G,Fe) of an image f . Ini-

tially, each leaf node (i.e. an individual point is considered as an individual region),

then for each edge e ∈ MST linking two vertices x and y in non-decreasing order of

their weight, perform the following operations:

(i) Find the largest component X containing x.

(ii) Find the largest component Y containing y.
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(a) Input image (b) k = 7500 (8 regions) (c) k = 9000 (14 regions)

Figure 8.2: An example illustrating the violation of the causality principle

by [Felzenszwalb 2004]: the number of regions (in parentheses) increases from 8

to 14, instead of decreasing when the parameter k increases.

(iii) If X = Y , which means the two vertices x and y are already in the same

component, do nothing. Otherwise, check the merging criterion between com-

ponent X and Y , if the condition in Eq (8.6) holds, merge X and Y .

At the end of the algorithm, an image partition given by those components is ob-

tained.

Note that the parameter k plays a very important role in the algorithm. However,

this parameter k is not a scale parameter according to the causality principle, which

says that a boundary present at a scale k1 should also be present at any scale

k2 < k1. This is not true for this e�cient segmentation algorithm. For instance,

the boundaries of the region above the head of the plane in Figure 8.2 (c) obtained

with k = 9000 are not present in Figure 8.2 (b) obtained with k = 7500. Moreover,

the number of regions increase with a bigger k, which is a non-desired property and

makes also the tunning of the parameter a di�cult task.

8.2.3 Hierarchical graph based image segmentation

The �rst algorithm to produce a hierarchical version of the method

in [Felzenszwalb 2004] was proposed by Haxhimusa and Kropatsch

in [Haxhimusa 2004], which is an iterative version of [Felzenszwalb 2004] us-

ing a threshold function, and a tunning of the threshold parameter is required.

Recently, Guimaraes et al. proposed in [Guimarães 2012] an e�cient hierarchical

graph-based image segmentation based on the method in [Felzenszwalb 2004].

Observe that the merging criterion given by Eq (8.6) depends on the parameter

k at which the regions X and Y are observed, they propose to consider the scale

SY (X) of X relative to Y as a measure for which X will �rst merge with Y . It is

given by

SY (X) =
(
Diff(X,Y )− Int(X)

)
× |X|. (8.7)
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In a symmetrical way, the scale SX(Y ) measures when Y will merge with X can be

de�ned. Then they de�ne the scale S(X,Y ) by

S(X,Y ) = max(SY (X), SX(Y )). (8.8)

Based on this notion of scale S(X,Y ), the merging criterion in Eq (8.6) can be

interpreted as follows: the neighboring region X and Y will merge when their scale

is less than the threshold parameter k.

Let PFeλ of V denotes the set of connected components of the graph made by V

and the edges of weight lower than λ. Then based on these notions, their proposed

algorithm is given as follows: It compute a saliency map being a weight map L

(scales of observations). For every edge ei, the weight map L(ei) is initialized to∞.

Then for each edge ei linking two vertices x and y in non-decreasing order of their

weights Fe, perform the following steps:

(i) Find the connected component X of PFeFe(ei) containing x.

(ii) Find the connected component Y of PFeFe(ei) containing y.

(iii) Compute the hierarchical observation scale L(ei).

The hierarchical observation scale L(ei) computation at step (iii) is obtained via

the notion of hierarchical scale S′Y (X) of X relative to Y , de�ned as the lowest

observation scale at which some sub-region of X, denoted as X∗, will merge with

Y . More precisely, using an internal parameter ν, S′Y (X) is computed by following

steps:

(1) Initialize the value of ν = 0.

(2) Increment the value of ν by 1.

(3) Find the region X∗ of PLν that contains x.

(4) repeat steps 2 and 3 while SY (X∗) > ν.

(5) SY (X∗) = ν

In a symmetrical way, S′X(Y ) is equivalently de�ned. Then L(ei) is simply set to

L(ei) = max{S′Y (X), S′X(Y )}. (8.9)

Thresholding this saliency map L with thresholding values from small to great yields

a set of hierarchical partitions from thin to coarse.
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8.3 Extending constrained connectivity

In practice, the use of the α-tree is usually based on the tree pruning strategy

using the local range α or global range ω. For instance, in the original paper that

introduces formally the notion of constrained connectivity, the whole hierarchy of α-

tree is not computed, but a level of this hierarchy given by thresholding it according

to the local range α and/or the global range ω. Note that both α and ω are instances

of increasing attributes. And as shown in Section 8.2.1, in the algorithmic point of

view, the α-tree is equivalent to the Min-tree of MST that can be e�ciently obtained

via binary partition tree by altitude ordering QBT by a step of post-processing.

We propose to use the framework of shape-based morphology taking the binary

partition tree by altitude ordering QBT as the input tree, and the attribute function

Af inspired from the work of Felzenszwalb and Huttenlocher in [Felzenszwalb 2004]

that relies on the MST. This attribute function Af measures the reluctancy of

each merge that forms the parent node. It is a non-increasing attribute, and its

computation will be detailed in Section 8.3.1. Then in Section 8.3.2, we will show

the saliency mapME computation using extinction values de�ned on minima of the

attribute function Af . This process can be seen as an extension of the hierarchy of

constrained connectivity, in the sense that a non-increasing attribute function Af
is used instead of a increasing one. A new hierarchy of segmentation is obtained

via this saliency mapME . A re�nement of the saliency mapME by removing the

regions being too small will is also applied.

8.3.1 Shape space given by QBT with non-increasing attributes

In a binary partition tree by altitude ordering QBT , Each node in this tree QBT
apart from the leaf nodes has exactly two children, and except the root node, each

region merges with another region linked by an edge in MST, and forms a parent

node. Based on the work in [Felzenszwalb 2004], this merging process is controlled

by a constant parameter k of the merging criterion in Eq (8.6). Following the idea

of the work in [Guimarães 2012], this merging criterion can be interpreted via the

notion of scale S(X,Y ) de�ned in Eq (8.8), which says the neighboring region X

and Y will merge when their scale is less than the given parameter k. We thus

propose to use S(X,Y ) as the attribute function. For a given node N , its attribute

Af (N ) is given by

Af (N ) = max{
(
Diff(Nc1 ,Nc2)− Int(Nc1)

)
× |Nc1 |,(

Diff(Nc1 ,Nc2)− Int(Nc2)
)
× |Nc2 |}, (8.10)
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where Nc1 , Nc2 , denote the two children node of node N . As described in Sec-

tion 8.2.3, a big Af means a large �observation scale�, which is to say more mean-

ingful in the hierarchy. Thus the maxima of the attribute function Af correspond

to meaningful regions.

8.3.2 Saliency map using extinction value

To cope the attribute function Af with the hierarchy transformation aspect of the

shape-based morphology framework, we use the attribute function Attribute′f , for a

given node N , that is

A′f (N ) = max
Nk∈QBT

Af (Nk)−Af (N ), (8.11)

so that the local minima of A′f correspond to meaningful regions. Use the method

of hierarchy transformation described in Section 3.6.2, we are able to compute a

saliency map M0
E based on the extinction value of the attribute function A′f . An

example of this saliency mapM0
E is illustrated in Figure 8.3 (b) for the input image

in Figure 8.3 (a). Observe that in this saliency map, there are many small regions

that are very salient, a step of re�nement is required. We propose to apply a grain

�lter followed by a topological watershed on the edges of the initial saliency map

M0
E whose results for the image in Figure 8.3 are shown in (c) and respectively (d).

For the imageM1
E obtained after a topological watershed applied on the edges, the

boundaries are included in the initial saliency map M0
E , thus the contour preser-

vation properties are still maintained. By lowering the catchment basins ofM1
E to

0, we have the �nal saliency mapME which is illustrated in (e) for the example in

Figure 8.3. One level of segmentation obtained by thresholding this �nal saliency

mapME is shown in Figure 8.3 (f).

8.4 Results

In this section, we will show some results about the proposed method in the frame-

work of shape-based morphology, that extends the constrained connectivity. The

experiments are conducted on the Berkeley Segmentation Dataset [Arbelaez 2011],

an extension of the BSDS300 [Martin 2001]. The dataset consists of 500 natural

images divided into 200 test images, 200 images for training, and 100 validation im-

ages, together with human annotations. Each image is segmented by an average of

�ve di�erent subjects. In Section 8.4.1, some qualitative results are illustrated, and

quantitative benchmark on the BSDS500 will be detailed in Section 8.4.2, compared

with the original method of Felzenszwalb and Huttenlocher in [Felzenszwalb 2004].
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(a) Input image (b) Initial saliency mapM0
E

(c) Filtered saliency mapM1
E (d) Topological watershed on edges ofM1

E

(e) Final saliency mapME (f) One level of segmentation (11 regions)

Figure 8.3: An example showing the scheme of the saliency map computation (a-e).

(f): One level of segmentation by thresholding the �nal saliency map in (e).
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8.4.1 Qualitative results

Some saliency mapsME obtained with the proposed method are illustrated in Fig-

ure 8.4, 8.5, 8.6, 8.7. For each image in those �gures, two partitions are illustrated.

They are given by thresholding the saliency mapME with the same �xed threshold

level called Optimal Dataset Scale (ODS) for the whole dataset, and respectively the

image dependent threshold level called Optimal Image Scale (OIS). Most of the par-

titions are reasonable. However, note that This method of extending the constrained

connectivity still belongs to the family of connected operators, so the boundaries'

location remain intact, no boundaries regularization/smoothing process is applied,

which explains the form of the boundaries (white curves) in those partitions.

8.4.2 Benchmark on the BSDS500

Quantitative evaluation is performed using the region-based performance measure-

ments described in [Arbelaez 2011], in terms of Ground-Truth (GT) Covering crite-

rion and Probabilistic Rand Index (PRI). The ground-truth covering measurement

is de�ned relying on the overlap between two regions R and R′ given by:

Ô(R,R′) =
|R ∩R′|
|R ∪R′|

. (8.12)

The overlap is widely used for the pixel-wise classi�cation task in recogni-

tion [Malisiewicz 2007]. The covering of a segmentation P by a segmentation P ′

is de�ned as:

Ĉ(P ′ → P) =
1

N

∑
R∈P
|R| ·

∑
R′∈P ′

Ô(R,R′), (8.13)

where N is the total number of pixels in the image. A bigger ground-truth covering

using the Eq (8.13) means that the partition is closer to the ground truth.

The probabilistic rand index measurement is based on the notion of Rand In-

dex [Rand 1971] that was originally introduced for general clustering evaluation.

The Rand Index between a partition P and a ground truth partition G is given by

the sum of the number of pairs of pixels having the same label in P and G and those

having di�erent labels in both partitions, divided by the total number of pairs of

pixels. Variants of Rand Index have been proposed [Unnikrishnan 2007, Yang 2008]

to deal with the case of multiple ground truth partitions. For a partition P and a

given set of ground truth partitions {Gk}, the PRI is de�ned as follows:

PRI(P, {Gk}) =
1

T

∑
i<j

(
cijpij + (1− cij)(1− pij)

)
, (8.14)

where cij is the event that pixel i, j have the same label and pij its probability. T

denotes the total number of pixel pairs. Using the sample mean to estimate pij , the
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Figure 8.4: Some hierarchical segmentation results on the BSDS500. From left to

right: Input image, saliency map, and segmentations at the optimal dataset scale

(ODS) and at the optimal image scale (OIS).
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Figure 8.5: Some hierarchical segmentation results on the BSDS500. From left to

right: Input image, saliency map, and segmentations at the optimal dataset scale

(ODS) and at the optimal image scale (OIS).



8.4. Results 195

Figure 8.6: Some additional hierarchical segmentation results on the BSDS500.

From top to bottom: Input mage, saliency map, and segmentations at the optimal

dataset scale (ODS) and at the optimal image scale (OIS).
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Figure 8.7: Some additional hierarchical segmentation results on the BSDS500.

From top to bottom: Input mage, saliency map, and segmentations at the optimal

dataset scale (ODS) and at the optimal image scale (OIS).
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Method
GT Covering Prob. Rand. Index

ODS OIS Best ODS OIS

FH [Felzenszwalb 2004] 0.43 0.53 0.68 0.76 0.79

Guimarães [Guimarães 2012] 0.46 0.53 0.60 0.76 0.81

Ours 0.50 0.57 0.66 0.77 0.82

Table 8.1: Preliminary region benchmarks on the BSDS500.

de�nition of PRI in Eq (8.14) amounts to averaging the Rand Index among di�erent

ground truth partitions. A partition P having a bigger PRI means that P is closer

to the set of ground truth partitions.

Here, we compare our results with the graph-based image segmentation (Felz-

Hutt) [Felzenszwalb 2004], and with another the method of hierarchical graph based

image segmentation proposed by (Guimarães et al.) [Guimarães 2012], also relying

on the same criterion popularized by [Felzenszwalb 2004]. The comparison is given

in Table 8.1. Our method ranks �rst, for both the optimal dataset scale (ODS) and

for optimal image scale (OIS).

8.5 Conclusion

This chapter has presented one application of the aspect of hierarchy transforma-

tion in the framework of shape-based morphology: an extension of the constrained

connectivity framework to non-increasing constraints. The �rst tree representation

T used in the framework of shape-based morphology is the binary partition tree

by altitude ordering from which the α-tree can be e�ciently obtained by a simple

post-processing. The used attribute function A is inspired from the work of e�cient

graph-based image segmentation in [Felzenszwalb 2004]. The experienced second

attribute function AA is the height of A. The scheme of hierarchy transformation

yields a saliency map that represents a set of partitions from �ne to coarse, which

are generally di�erent from the cuts of the input α-tree. Qualitative results show

that a partition being close to the ground truth can be obtained by thresholding

the produced saliency map. Besides, a quantitative evaluation based on the Ground

Truth Covering and the Probability Rand Index demonstrates that our approach

compares favorably to previous works.
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Algorithm





Chapter 9

Algorithms to compute

information on the tree

All the applications discussed above relying on the framework of shape-

based morphology were implemented using our C++ image processing library

Olena [Levillain 2009, Levillain 2012a, Levillain 2010, Levillain 2012b], which is a

generic and e�cient image processing framework, available on the Internet as free

software 1. In this chapter, we will detail those algorithms. We will start with the

algorithm for tree construction in Section 9.1 that relies on the union-�nd process.

Some additional information to prepare the attribute A computation will also be

presented in this section. Then in Section 9.2, we will show how to e�ciently com-

pute the attributes relying on the accumulated information on region, contour, and

context. We will then illustrate the computation of the minimal information along

the contour in Section 9.3, that is the case of the number of false alarms (NFA). In

section 9.4, we will show the algorithm for saliency map computation relying on the

extinction values. Finally, in Section 9.5, we will present an algorithm of disjoint

level lines selection relying on the topographic map representation. This algorithm

provides an image simpli�cation method that make the image well-composed with-

out doubling the image size.

9.1 Tree construction

As mentioned in Section 8.2.1, the computation of the binary partition tree by

altitude ordering QBT can be implemented by the Min-tree construction applied

on the pixel edges lying between pixels instead of pixels themselves, so does the

α-tree, which can be obtained by a post-processing of QBT . So in this section,

we focus on the algorithms to compute the three morphological trees, i.e., Min-

tree, Max-tree, and the topographic map. There exist several algorithms to com-

pute the Min/Max-tree that can be divided into two categories: the �ooding pro-

cess based approaches [Salembier 1998, Nistér 2008] and the union-�nd based ap-

proaches [Najman 2006, Berger 2007]. A detailed comparison of those Min/Max-

1http://olena.lrde.epita.fr

http://olena.lrde.epita.fr
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tree computation algorithms is presented in [Carlinet 2013]. We will detail the algo-

rithm based on union-�nd process. Concerning the topographic map, there are four

di�erent algorithms. The �rst one is the fast level lines transform (FLLT) proposed

by Monasse and Guichard in [Monasse 2000b]. Then Song proposed a topdown algo-

rithm for computation of level lines in [Song 2007]. Another algorithm was proposed

by Caselles and Monasse [Caselles 2009]. The complexity of these three algorithms

is O(N2), and they are hard to implement. Recently, Géraud et al. proposed a

quasi-linear algorithm for the topographic map computation [Géraud 2013]. Here

we will detail this algorithm which is also based on the union-�nd process.

These union-�nd based algorithms feature a common scheme of process that is

composed of two steps given as follows:

1) Sort the pixels in the decreasing tree order.

2) In the reverse order, rely on the union-�nd process to compute the tree.

For those three di�erent trees, they di�er in the sorting step. All of them have

a quasi-linear complexity O(α(N) × N) for low quantized image, where α() is the

extremely slowly growing inverse of the single-valued Ackermann function. Now let

us start with the union-�nd algorithm, which is given in Algorithm 1.

For a low quantized image f , we can use Bucket sort algorithm to sort the

pixels in increasing order or decreasing order. Then the Min-tree and Max-tree

representation can be obtained by Algorithm 2, where SORT_MONOTONE Is

either a increasing sorting (Max-tree) or a decreasing sorting (Min-tree).

Concerning the topographic, the sorting step is more complicated. It �rst in-

terpolate the scalar image to an image of range using the Khalimsky's grid (see

Figure 3.12). Then the sorting step is based on a priority queue q, and two opera-

tions of the priority queue q de�ned in Algorithm 3. Then the sorting algorithm is

given in Algorithm 4, and the algorithm for computing the topographic map is de-

picted in Algorithm 5. More details about this quasi-linear algorithm that computes

the topographic map can be found in the work of Géraud et al. [Géraud 2013].

9.2 Attributes accumulated on region, contour and con-

text

Most of the attributes used in those applications described in Part III can be com-

puted incrementally. They rely on some information that can be accumulated during

the tree construction. We distinguish those information into three categories: infor-

mation accumulated on region (see Section 9.2.1), on contour (see Section 9.2.2), and
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Explanation of variables:

R set of sorted pixels

N total number of pixels

p, q, n, x pixel

N neighbors

parent, zpar image of parenthood, temporary parenthood

input : A set of sorted pixels R.
output: Image of parenthood parent.

FIND_ROOT(zpar, x)

begin

if zpar(x) = x then
return x

else
zpar(x)← FIND_ROOT(zpar, zpar(x))

return zpar(x)

end

end

UNION_FIND(R)
begin

for all p do
zpar(p)← undef

end

for i← N − 1 to 0 do
p← R[i]

parent(p)← p

zpar(p)← p

for all n ∈ N (p) such as zpar(n) 6= undef do
r ← FIND_ROOT(zpar, n)

if r 6= p then
parent(r)← p

zpar(r)← p

end

end

end

return parent

end

Algorithm 1: Union-�nd process.
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input : An image f .

output: Image of parenthood parent.

CANONIZE_TREE(f,R, parent)
begin

for i← 0 to N − 1 do
p← R[i]

q ← parent(p)

if f(parent(q)) = f(q) then parent(p)← parent(q)

end

return parent

end

COMPUTE_MIN_MAX_TREE(f)

begin
R ← SORT_MONOTONE(f)

parent← UNION_FIND(R)
parent← CANONIZE_TREE(f,R, parent)
return parent

end

Algorithm 2: Min-tree and Max-tree construction.

on context (see Section 9.2.3). For the purpose of simplicity, we consider the Min-

tree or Max-tree representation. The attributes computation for the topographic

map representation shares the same principle.

9.2.1 Attributes accumulated on region

In the tree construction process, the algorithm starts with the pixels lying on the

leaves, and the union-�nd process acts as kind of region merging process. So the

connected components in the tree representation are created by region growing pro-

cess. We are capable to handle the information accumulated on region e�ciently,

such as the area, the sum of gray level or sum of square of gray level that can be

used to compute the mean and variance inside each region, the moments of each

region based on which we can compute some shape attributes As, e.g., the elon-

gation de�ned in Eq (5.31), and the attribute measuring how much a given shape

�ts an ellipse de�ned in Eq (6.1). Taking the area, sum of gray level, and sum of

coordinates x as examples, we can add some operations to the union-�nd process

during the tree construction. It is given in Algorithm 6.
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Explanation of variables:

R set of sorted d-faces (d = 0, 1, 2)

q priority queue

h, n d-face in Khalimsky's grid (d = 0, 1, 2)

F Set-valued map

l, l′ gray level

PRIORITY_PUSH(q, h, F, l)

/* modify q */

begin
[lower, upper]← F (h)

if lower > l then
l′ ← lower

else if upper < l then
l′ ← l

else
l′ ← l

end

PUSH(q[l′], h)
end

PRIORITY_POP(q, l)

/* modify q, and sometimes l */

begin

if q[l] is empty then
l′ ← level next to l such as q[l′] is not empty

l← l′

end

return POP(q[l])
end

Algorithm 3: Push and Pop operation of the priority queue q.
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input : A set-valued map.

output: A pair of sorted d-faces R and a interpolated image f b.

SORT(F )

begin

for all h do
deja_vu(h)← false

end

i← 0

PUSH(q[l∞], p∞)

deja_vu(p∞)← true

l← l∞ /* start from root level */

while q is not empty do
h← PRIORITY_POP(q, l)

f b(h)← l

R[i]← h

for all n ∈ N (h) such as deja_vu(n) = false do
PRIORITY_PUSH(q, n, F, l)

deja_vu(n)← true
end

i← i+ 1

/* if q[l] is empty, we are done with level l */
end

return (R, f b)
end

Algorithm 4: Sorting step for computing the topographic map.

input : An image f .

output: The topographic map representation parent.

COMPUTE_TOPOGRAPHIC_MAP(f)

begin
F ← INTERPOLATE(f)

(R, f b)← SORT(F)

parent← UNION_FIND(R)
parent← CANONIZE_TREE(f b,R, parent)
return parent

end

Algorithm 5: Topographic map computation.
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Explanation of variables:

area image of area

sum_f image of sum of gray level

sum_x image of sum of coordinates x

UNION_FIND(R)
begin

for all p do
zpar(p)← undef

area(p)← 0

sum_f(p)← 0

sum_x(p)← 0

end

for i← N − 1 to 0 do
p← R[i]

parent(p)← p

zpar(p)← p

area(p)← 1

sum_f(p)← f(p)

sum_x(p)← p.row()

for all n ∈ N (p) such as zpar(n) 6= undef do
r ← FIND_ROOT(zpar, n)

if r 6= p then
parent(r)← p

zpar(r)← p

area(p)← area(p) + area(r)

sum_f(p)← sum_f(p) + sum_f(r)

sum_x(p)← sum_x(p) + sum_x(r)

end

end

end

return parent

end

Algorithm 6: Incremental computation of region-based information.
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9.2.2 Attributes accumulated on contour

Besides the e�cient computation of those attributes accumulated on region, the

attributes accumulated on contour can be managed in the same way during the

union-�nd process that can be seen as a region growing process. The basic idea is

that every time a pixel p is added to the current region to form a parent region,

verify its four pixel edges, that is the neighbors (4-connectivity N4(p)) of the current

pixel in the Khalimsky's grid. If a pixel edge e is already added to the current region

(i.e., belongs to its boundary), then remove e after adding p, since that pixel edge

e will be inside the parent region, consequently it is no longer on the boundary.

Otherwise, add this pixel edge e. This process is illustrated in Figure 7.2 (a). It

is based on the use of an image de�ned on pixel edges that indicates if the pixel

edge belongs to the boundary of some region. Taking the length of region boundary,

the sum of gradient's magnitude as examples, the algorithm to handle the contour

information is illustrated in Algorithm 7 by adding some operations to the union-

�nd process. The attribute of average of gradient's magnitude and curvature along

the region boundary de�ned in Eq (3.8) and respectively Eq (5.28) can then be

easily obtained.

9.2.3 Attributes accumulated on context

The approximated context-based information illustrated in Figure 7.2 (b) relies on

the region boundary. In fact, using this approximation, for a given shape τ and a

thickness ε, the area of the interior region Rεin(∂τ) and exterior region Rεout(∂τ) are

equivalent, and given by

Rεin(∂τ) = Rεout(∂τ) = ε|∂τ |, (9.1)

where |∂τ | denotes the contour length of region represented by τ . The attributes

accumulated on context can be computed in the same way as the computation of

attributes accumulated on contour. But we have to pay attention to the interior and

exterior information while doing the update operation. The algorithm for computing

the sum of gray level inside the exterior region Rεout(∂τ) is shown in Algorithm 8,

which relies on two pre-computed images con_top_right and con_down_left de-

�ned on pixel edges e that encodes the accumulated information of the ε pixels above

(horizontal pixel edge) or on the right side (vertical pixel edge) of e, and respectively

below (horizontal pixel edge) or on the left side (vertical pixel edge) of e. Other

accumulated information on context required in Eq (7.16) for the context-based

energy estimator can be computed in the same way.
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Explanation of variables:

ima_grad pre-computed image of gradient's magnitude on pixel edges

is_boundary image indicating whether a pixel edge e lies in boundary

length image of length of region boundary

sum_grad image of sum of gradient's magnitude along the boundary

UNION_FIND(R)
begin

for all p do
zpar(p)← undef

length(p)← 0

sum_grad(p)← 0

end

for all e do is_boundary(e)← false

for i← N − 1 to 0 do
p← R[i]

parent(p)← p

zpar(p)← p

for all n ∈ N (p) such as zpar(n) 6= undef do
r ← FIND_ROOT(zpar, n)

if r 6= p then
parent(r)← p

zpar(r)← p

length(p)← length(p) + length(r)

sum_grad(p)← sum_grad(p) + sum_grad(r)

end

end

for all e ∈ N4(p) do

if !is_boundary(e) then
is_boundary(e)← true

length(p)← length(p) + 1

sum_boundary(p)← sum_boundary(p) + ima_grad(e)

else
is_boundary(e)← false

length(p)← length(p)− 1

sum_boundary(p)← sum_boundary(p)− ima_grad(e)

end

end

end

return parent

end

Algorithm 7: Incremental computation of contour-based information.
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Explanation of variables:

con_top_right pre-computed image of context on pixel edges

con_down_left pre-computed image of context on pixel edges

sum_f_ext image of sum of gray level in exterior region Rεout(∂τ)

UNION_FIND(R)
begin

for all p do
zpar(p)← undef

sum_f_ext(p)← 0

end

for all e do is_boundary(e)← false

for i← N − 1 to 0 do
p← R[i]

parent(p)← p

zpar(p)← p

for all n ∈ N (p) such as zpar(n) 6= undef do
r ← FIND_ROOT(zpar, n)

if r 6= p then
parent(r)← p

zpar(r)← p

sum_f_ext(p)← sum_f_ext(p) + sum_f_ext(r)
end

end

for all e ∈ N4(p) do

if !is_boundary(e) then
is_boundary(e)← true

if e is above or on the right of p then
sum_f_ext(p)← sum_f_ext(p) + con_top_right(e)

else
sum_f_ext(p)← sum_f_ext(p) + con_down_left(e)

end

else
is_boundary(e)← false

if e is above or on the right of p then
sum_f_ext(p)← sum_f_ext(p)− con_down_left(e)

else
sum_f_ext(p)← sum_f_ext(p)− con_top_right(e)

end

end

end

end

return parent

end

Algorithm 8: Incremental computation of context-based information.
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9.3 Attributes based on minimum information along the

contour

Apart from those attributes based on the accumulated information, the number

of false alarms (NFA) requires a minimal information, i.e., the minimal gradient's

magnitude along the boundary of each region. Here we propose an e�cient algorithm

that handle this kind of attributes. It relies on two images appear and vanish de�ned

on pixel edges that encode the node Na for which a pixel edge e �rstly appears as

part of the boundary, and respectively the node Nv for which a pixel edge e is �rstly

no longer belonging to the boundary. Note that Na and Nv might be equal, e.g., the

case of pixel edges inside a �at zone. The computation of the minimal gradient's

magnitude along the contour is depicted in Algorithm 9.

9.4 Saliency map computation

As discussed in Section 3.6.2, the saliency map introduced in the framework of

shape-based morphology relies on the extinction value de�ned on the local minima,

that has been reviewed in Section 3.2.3 and illustrated in Figure 3.5. Once we have

the extinction value for all the minima, we can weight the extinction value to the

boundary of the region corresponding to the minima. That is to say for each pixel

edge, take the maximal extinction value of those minima for which this pixel edge is

on their boundaries. This can be easily achieved via two images appear and vanish

that have been used in Algorithm 9. Finally, a saliency map is obtained.

The basic idea for calculating the extinction value for each minimum is based

on a Min-tree T T of the �rst tree T weighted with some attribute function A, and
a propagation of the minima (Hence the leaves of the Min-tree T T ) to the rest

nodes. More speci�cally, for each minimum mi, so a leaf, we propagate the nodes

from this leaf to the root of the Min-tree T T , if the node is not met yet by the

propagation of any other minimum mj , we say that the original of this node is mi.

Otherwise, let mj be its current original minimum, if attribute of the original of this

node A(mh) > A(mi), update mi as the original of this node. if for certain node,

A(mj) < A(mi), there is no need to do the update of original minimum, we can

stop the propagation for this minimum. Once the propagation of all the minima

is �nished, taking the dynamic as an example, the extinction value for a minimum

mi is the di�erence between A(mi) and the attribute of the highest ancestor of mi

on the Min-tree T T whose original minimum is still mi. This process of saliency

map computation relying on the extinction value is illustrated in Algorithm 10. The

saliency map described in this algorithm is de�ned only on the pixel edges, i.e., 1-
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Explanation of variables:

appear image storing node for which e belongs �rstly to its boundary

vanish image storing node for which e is �rstly not on its boundary

min_grad image of minimal gradient's magnitude

UNION_FIND(R)
begin

for all p do
zpar(p)← undef

min_grad(p)← max_value
end

for all e do is_boundary(e)← false

for i← N − 1 to 0 do
p← R[i], parent(p)← p, zpar(p)← p

for all n ∈ N (p) such as zpar(n) 6= undef do
r ← FIND_ROOT(zpar, n)

if r 6= p then
parent(r)← p, zpar(r)← p

end

end

for all e ∈ N4(p) do

if !is_boundary(e) then
is_boundary(e)← true, appear(e)← p

else
is_boundary(e)← false, vanish(e)← p

end

end

end

for all e do
Na ← appear(e),Nv ← vanish(e)

while Na 6= Nv do
min_grad(Na)← min(min_grad(Na), ima_grad(e))

Na ← parent(Na)
end

end

return parent

end

Algorithm 9: Computation of minimal information along the contour.
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faces. For the 0-faces, it take the maximal value among the four 1-faces that share

this 0-face in common.

9.5 Disjoint level lines selection

Each node of the topographic map represents a connected component without holes,

the boundaries of the connected components are the level lines. It has been shown

that signi�cant contours of objects in images coincide with segments of the level

lines [Caselles 1999]. In natural images, the number of level lines is in the same

order of number of pixels, which make the topographic map di�cult to be visualized.

In fact, many level lines share some parts in common, which is to say that two

neighboring level lines in the topographic map may only di�er in a few pixel edges

(in the case such that the level lines are materialized into pixel edges, i.e., 1-faces).

In this section, we provide an e�cient algorithm to select a set of disjoint level lines

from the topographic map, such that any two selected level lines do not intersect.

This algorithm yields a simpli�ed image f ′ reconstructed from those selected level

lines. The main structure of the topographic map of the original image f can be

easily visualized from this simpli�ed image f ′. In fact, this simpli�ed image is a well-

composed image which is usually obtained by doubling the image size. In our case,

the generated well-composed image f ′ has the same size as the original image f .

The core of this algorithm will be detailed in Section 9.5.1. Then in Section 9.5.2, we

will depict the algorithm and illustrate several rules of disjoint level lines selection.

9.5.1 Incompatible nodes preparation

The core of the algorithm for selecting a set of disjoint level lines relies on an

image de�ned on the nodes that we call last_not_allowed, that encodes for each

node N the highest ancestor node Na for which they still share some pixel edges.

When this image is available, for each level line ∂N , we are able to predict a set of

incompatible nodes of this node N . In fact, if a node N is selected, we cannot select

its ancestor nodes Na till the one encoded by the image last_not_allowed(N ), and

the descendant nodes Nd for which the selected node N is in the subbranch starting

from Nd till the ancestor node given by last_not_allowed(Nd) cannot be selected
either. Based on this principle, we are able to select a set of nodes such that any

pair of selected nodes are not incompatible, i.e., they are disjoint level lines.

Now let us show how to compute the image last_not_allowed. To compute it

e�ciently, we need another image depth storing the depth of each node on the tree

(starting from 0 for the root node). For each node N apart from the root node:

depth(N ) = depth(parent(N )) + 1 (9.2)
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Explanation of variables:

pparent image of parenthood of the second tree T T
m local minima node
n node of T
is_seen image indicating whether a node is already propagated
original_min image de�ned on nodes storing original minimum
extinct_value image of extinction value

input : An input image f .
output: Saliency map.

COMPUTE_SALIENCY_MAP(f)
begin

(T ,A)← COMPUTE_TREE(f)
pparent← COMPUTE_MIN_TREE(T ,A)
for all n ∈ T do is_seen(n)← false, original_min(n)← undef,
extinct_value(m)← 0
for all e do saliency_map(e)← 0
for all m do

original_min(m)← m, p← pparent(m)
while p 6= pparent(p) do

if !is_seen(p) then
is_seen(p)← true, original_min(p)← m

else
if A(original_min(p)) > A(m) then original_min(p)← m
else break

end

end
if p = pparent(p) then

if !is_seen(p) then is_seen(p)← true, original_min(p)← m
else if A(original_min(p)) > A(m) then original_min(p)← m

end

end
for all m do

p← m
while original_min(pparent(p)) = m and p 6= pparent(p) do

p← pparent(p)
end
extinct_value(m)← A(p)−A(m)

end
for all e do
Na ← appear(e),Nv ← vanish(e)
while Na 6= Nv do

saliency_map(Na)← max(extinct_value(Na), saliency_map(e))
Na ← parent(Na)

end

end
return saliency_map

end

Algorithm 10: Computation of saliency map.
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And thanks to the image appear and vanish used in Section 9.3, the computation

of the image last_not_allowed can be achieved with the following process: For

each pixel edge e, let the node a = appear(e) and v = vanish(e) be respectively

the �rst node where e is on its boundary and the �rst node where e is no longer

on its boundary. Let vc be the child of v being also an ancestor node of a. We

can update the image last_not_allowed for the nodes on the sub-branch starting

from a to v′, which cannot be lower than v′. That is to say the depth of the nodes

of the image last_not_allowed on a to v′ cannot be smaller than depth(v′). The

algorithm to compute this image last_not_allowed is depicted in Algorithm 11,

where vec_nodes stands for the sorted set of nodes of the topographic map in the

tree descending order, and NN is the total number of nodes.

Explanation of variables:

vec_nodes set of sorted nodes in tree descending order
NN total number of nodes
n node
depth image of depth
last_not_allowed image of the highest incompatible node

COMPUTE_LAST_NOT_ALLOWED(parent, vec_nodes)
begin

for all n do
depth(n)← −1, last_not_allowed(n)← n

end
for i← 0 to NN − 1 do

n← vec_nodes[i]
depth(n)← depth(parent(n)) + 1

end
for all e do

a← appear(e), v ← vanish(e)
if a 6= v then

n← a
while parent(n) 6= v do n← parent(n)
while a 6= n do

if depth(last_not_allowed(a)) > depth(n) then
last_not_allowed(a)← n

a← parent(a)

end

end

end
return last_not_allowed

end

Algorithm 11: Computation of image last_not_allowed.
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9.5.2 Final disjoint nodes selection

Once the image last_not_allowed is available, we are able to select a set of nodes

such that any pair of nodes are compatible. Now let us detail how to process the

choices according to a pre-computed order of nodes selection, such as top-down or

bottom-up order. We propagate all the nodes in the pre-computed order, for each

node N , we perform two operations:

1) Check if there is an ancestor node being incompatible with N has already

been selected. This veri�cation is based on the image last_not_allowed.

2) If none of the incompatible ancestor nodes given by the image

last_not_allowed(N ) is selected, then select this node N , and disable all

its incompatible ancestor nodes. This step makes sure that we don't have to

check the incompatibility with the descendants for a given node. Otherwise,

do nothing.

Finally, the algorithm for the disjoint level lines selection is depicted in Algorithm 12.

We have experienced three di�erent orders for disjoint level lines selection: top-down

selection order (from root node to the leaf nodes), bottom-up (from the leaf nodes

to the root node), and meaningfulness decreasing order, e.g., average of gradient's

magnitude along the level lines de�ned by Eq (3.8). Two examples of such disjoint

level lines selection are illustrated in Figure 9.1 and Figure 9.2, where a grain �l-

ter [Caselles 2002] is also applied to not select level lines of regions being too small.

The main structure of the topographic map can be easily visualized through the

simpli�ed image reconstructed from the set of disjoint level lines.
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Explanation of variables:

is_checked image indicating whether a node is already checked

vec_nodes set of sorted nodes in a given order

is_selected image of indicating whether a node is selected

SELECT_DISJOINT_LEVEL_LINES(parent, last_not_allowed)

begin
for all n do is_checked(n)← false, is_selected(n)← ture

for i← 0 to NN − 1 do
n← vec_nodes[i]

if is_selected(n) then
nnot = last_not_allowed(n)

if n 6= nnot then
nt← parent(n)

while nt 6= nnot do

if is_selected(nt) and is_checked(nt) then
is_selected(n)← false

break
nt← parent(nt)

end

if is_selected(nnot) and is_checked(nnot) then
is_selected(n)← false

if is_selected(n) then
nnot = last_not_allowed(n)

if n 6= nnot then
nt← parent(n)

while nt 6= nnot do
is_selected(nt)← false

is_checked(nt)← true

nt← parent(nt)

end

is_selected(nnot)← false

is_checked(nnot)← true

is_checked(n)← true

end

return is_selected

end

Algorithm 12: Disjoint level lines selection relying on the image

last_not_allowed.
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Figure 9.1: Illustration of the disjoint level lines selection with di�erent orders. From

top to down: original image, bottom-up, top-down, average of gradient's magnitude

decreasing. Left: grayscale image; Right: corresponding randomly colorized image.
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Figure 9.2: Another illustration of the disjoint level lines selection with di�erent

orders. From top to down: original image, bottom-up, top-down, average of gradi-

ent's magnitude decreasing. Left: grayscale image; Right: corresponding randomly

colorized image.
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Chapter 10

Conclusion and perspectives

In this thesis, we have introduced the notion of tree-based shape space given by any

tree-based image representation. The classical connected operators [Salembier 2009]

can be seen as a limited analysis of this tree-based shape space. Many appli-

cations relying on the tree-based representations, such as meaningful level lines

selection [Cao 2005] and MSER [Matas 2002], are equivalent to selecting rele-

vant/representative points from the shape space. A variant of MSER, called TBMR,

and presented in Chapter 4, selects some feature points in the tree-based shape space

based on topological information. A main contribution of this thesis is to propose

the versatile shape-based morphology framework (Chapter 3), which is summarized

in Table 10.1. The applications of di�erent aspects of this framework can be found

in Part III. The main results of the work presented in this PhD thesis is summarized

in the following section, and some perspectives are given in the last section.

10.1 Main results

The core contribution of our work is the framework of shape-based morphology pre-

sented in Chapter 3. It shares the same idea as the classical connected operators that

one can rely on a tree-based image representation T to get interesting properties.

We propose to expand on this idea by introducing the notion of tree-based shape

space given by the �rst tree T . This notion provides a new point of view of the

classical connected operators and of the many applications in image processing and

Aspect Applications Details

Shape �ltering retinal image analysis and shapings Sec. 3.4 and Chap. 6

Object detection object detection/segmentation Sec. 3.5 and Chap. 7

Hierarchy transformation extending constrained connectivity Sec. 3.6 and Chap. 8

Table 10.1: Three main aspects of the proposed framework of shape-based morphol-

ogy, and some corresponding applications developed in the work presented in this

thesis.
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computer vision that makes use of the trees. A �rst consequence of this change of

point of view is our proposition of the TBMR method, presented in Chapter 4, and

which is a variant of the MSER method. The principle of the framework of shape-

based morphology is to apply connected operators on the shape space through a

second tree T T , built from the shape space given by T . Di�erent aspects of this

framework are given in Table 10.1. Some contributions of this PhD thesis are also

several applications of the framework of shape-based morphology.

Tree-based shape space (see Chapter 2) - The introduction of this notion

provides us with a new point of view of classical operators, they do not take bene�t

from the whole structure of the shape space. Besides, many applications in image

processing and computer vision relying on some tree representations can be seen as

a selection of relevant or representative points or components from the shape space.

In some cases, the selection decision is made individually, and in some cases, the

local structure of the tree is used to guide the selection.

Tree-based Morse regions (TBMR) (see Chapter 4) - Inspired from the

widely used MSER method [Matas 2002], which can be seen as relevant node selec-

tion from the Min/Max-trees, the TBMR approach proposes to select relevant nodes

from the shape spaces based on topological information motivated by Morse theory.

We have shown that the TBMR is truly contrast independent, quasi parameter free,

and fast to compute with a linear or quasi-linear complexity. The repeatability test

shows that it achieves state-of-the-art results. In addition, applications to homo-

graphic registration and 3D reconstruction demonstrate its accuracy and robustness,

as compared to some other state-of-the-art detectors.

Hierarchical image simpli�cation (see Chapter 5) - We have presented an

e�cient salient level lines selection method that strongly simpli�es images, while

preserving their meaningful structures. It is a fast variant of the approach proposed

by Ballester et al. in [Ballester 2007]. We have suggested a fast greedy algorithm

that minimizes the piecewise-constant Mumford-Shah functional [Mumford 1989]

subordinated to the topographic map [Monasse 2000b]. In fact, our method is one

of the many variants of morphological shapings de�ned in the framework of shape-

based morphology. The applications of pre-segmentation of color images and of

autophagosome counting in cellular images demonstrate its usefulness and robust-

ness. Besides, we have shown that an attribute function derived from this method

along with the aspect of hierarchy transformation in Section 3.6 yields a hierarchical

version of image simpli�cation represented by a saliency map. Most of the salient

level lines can be obtained by thresholding this map.

Shape �ltering (see Chapter 6) - The shape-based upper/lower levelings ob-

tained by some �ltering using the proposed framework are applied to retinal image
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analysis. It includes blood vessel segmentation and optic nerve head segmentation.

In both cases, quantitative assessments on public datasets have shown that such a

�simple� �ltering step achieves some results that are almost as good as those ob-

tained by human observer. Compared to some other dedicated approaches, it gives

similar results with a much more simple process. An interesting example of the

morphological shapings has also been illustrated with an image of zeolite. It �lters

out most of the unwanted objects, while keeping intact the desired bright and dark

objects.

Object detection/segmentation (see Chapter 7) - We proposed a new energy

functional, well-suited to characterize object contours. It makes use of a regional

context, which make the energy neither too local nor global. The aspect of object

detection/segmentation of the proposed framework along with this new energy func-

tional improves the relevance and robustness of object detection, as compared to

several state-of-the-art methods. It has a quasi-linear time complexity. Besides, a

soft object detection/segmentation result can be obtained via saliency map using

the aspect of hierarchy transformation.

Extending constrained connectivity (see Chapter 8) - We have presented an

extension of constrained connectivity [Soille 2008] to non-increasing constraints. It is

represented by a saliency map achieved by the aspect of the hierarchy transformation

in our framework. Instead of using the local range of the gray levels (the case

of constrained connectivity), we make use of an attribute function inspired from

the work of e�cient graph-based image segmentation of [Felzenszwalb 2004]. The

obtained saliency map was benchmarked on the BSDS500 dataset [Arbelaez 2011].

Qualitative results show that we can obtain a partition that is close to the ground

truth by thresholding the produced saliency map. Besides, quantitative evaluation

demonstrates also that this extension of constrained connectivity achieves state-of-

the-art results.

Algorithms to compute information on the tree (see Chapter 9) - We

further present e�cient algorithms able to compute useful information used for

applications using the trees: information on the region, contour, and context. We

have also suggested an e�cient algorithm to compute the minimal information along

the contour. Furthermore, we have presented an e�cient algorithm selecting disjoint

level lines from the topographic map that can be used to visualize directly the

main structure of a topographic map representation. It provides also an image

simpli�cation method that makes the image well-composed without duplicating the

image size.
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10.2 Future work

The work presented in this PhD thesis o�ers many avenues for further investigation.

10.2.1 Future directions of the developed applications

For each application presented in Part III and developed under the proposed frame-

work of shape-based morphology, some improvements and future works are conceiv-

able.

Local feature detection - The TBMR method presented in Chapter 4 is a

variant of the widely used MSER; it achieves a comparable repeatability score, but

a signi�cant higher number of points. A �rst perspective is to �lter the TBMRs

using the topological persistence. We might then expect a higher repeatability score

by sacri�cing slightly the number of detected points. A second possibility to improve

the repeatability score is to change the �scale� associated to each critical region (i.e.,

critical point) in the de�nition of TBMR. For instance, instead of selecting the largest

topologically equivalent one, we can chose the one being the most meaningful and

topologically equivalent. Another perspective is to extend directly the de�nition of

MSER by replacing the relative area variation in Eq (3.2) with another attribute

function bearing the same invariant properties (for instance, Eq 3.8), followed by a

morphological �ltering applied on the tree-based shape space in order to remove the

non-relevant nodes.

Hierarchical image simpli�cation - The hierarchical image simpli�cation

presented in Chapter 5 is achieved by salient level lines selection. This selection

is guided by minimizing the piecewise-constant Mumford-Shah functional subor-

dinated to the topographic map. One possible application of this simpli�cation

method is image compression. A �rst future work is to prove that the local optimal

solution subordinated to the topographic map is close to a local optimal solution

of the functional applied directly to the space of image. The second perspective is

to �nd how to post-process the pre-segmented color image given by this method

to obtain an e�ective segmentation result. The same perspective applies also to

obtain a hierarchical segmentation from the hierarchical image simpli�cation. One

possible application of this hierarchical image simpli�cation is hierarchical feature

learning, such as shown in the work of Farabet et al. [Farabet 2013]. Finally, the

extension of this method to 3D images is also one of the future works. For instance,

in the application of this method to autophagosome counting, the original image is

actually a 3D image, whereas, in this thesis, we process it slice by slice.

Retinal image analysis - The application of the �simple� �ltering to reti-

nal image analysis presented in Chapter 6 achieves comparable results with those
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of dedicated and much more complex methods. For the blood vessel segmenta-

tion, a �rst perspective is to preprocess the images with the method of path open-

ing [Talbot 2007] to improve the presentation of the blood vessels in the in the

tree-based shape space. A thinning process might be useful to retrieve the very thin

structures that have been missed. Besides, a more sophisticated attribute function

characterizing the vesselness is also worth further investigation. Another step will

be to extend this method to blood vessel segmentation in 3D images. Concerning

the optic nerve head (ONH) segmentation, one possible improvement is to use a

deformable model instead of an elliptical model that �ts the ONH, so that we can

improve the precision in terms of ONH boundaries.

Object detection/segmentation - The scheme of object detec-

tion/segmentation presented in Chapter 7 employs a context-based energy

estimator along with the topographic map representation. The context information

is computed approximately. A perspective is to compute exactly and e�ciently the

information based on context. Another perspective of this work is to demonstrate

the usefulness with other tree-based shape spaces, in which the objects are better

presented. Finally, an extra future work is to extend this method to color images,

and more generally, multi-valued images.

Extending constrained connectivity - Extending constrained connectivity,

as presented in Chapter 8, is an application of the aspect of hierarchy transforma-

tion of the proposed framework. The underlying tree is the α-tree, and the attribute

function is inspired by the work described in [Felzenszwalb 2004]. We have bench-

marked this method and compared it to the original method of [Felzenszwalb 2004]

and to one hierarchical version [Guimarães 2012]. One future work would be to

benchmark this method with the hierarchy of the α-tree, i.e., the attribute map

de�ned on boundaries using the local range of gray levels as an attribute function.

One perspective of this work is to experiment some other attribute functions (for

instance, some statistical measure) than the one inspired from [Felzenszwalb 2004].

This is still an extension of the constrained connectivity [Soille 2008]. Another per-

spective is to change the underlying tree. For example, the binary partition tree

(BPT) [Salembier 2000], and apply the same process of hierarchy transformation.

10.2.2 Future directions for the proposed framework

The main contribution of the framework of shape-based morphology is a more robust

method for the tree-based shape space analysis. It makes use of the tree structure to

make a decision instead of making a decision individually. There are three important

factors to make this framework work better.

Tree-based shape space - The choice of a tree structure to generate the tree-
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based shape space is application-driven. The di�erent tree types are presented in

Section 2.3. One main purpose is to produce a pertinent tree for color images, for

instance, a topographic-like map. Then we can exploit di�erent similarity measures

(such as the statistical measures presented in [Calderero 2010]) between regions to

build a region-merging-based tree.

First attribute function A - The analysis of the tree-based shape space is

performed on the basis of the attribute function A characterizing each point of the

shape space. One major perspective is to rely on learning to chose the more relevant

attribute A.
Second attribute function AA - The decision of the shape space analysis is

achieved by pruning a second tree representation based on AA. In the future, we

would like to experiment some second attributes AA. One major perspective is to

compute it from some contextual information of the original image domain.

The three aspects of the proposed framework of shape-based morphology are

open issues worth further study.

Filtering - We would like to study some properties of the shape �ltering given

by the framework, such as the condition of being idempotent. Another perspective is

to compare the levelings [Meyer 1998, Meyer 2004] and the morphological shapings.

Object detection/segmentation - After �ltering in the shape space to remove

spurious minima, remaining minima are presented in terms of �at zones in the

shape space. Instead of choosing the node having the smallest attribute as the

representative for each �at zone, we might choose the node being the largest one in

size. Another possibility is to apply a linear �lter in the shape space instead of a

connected �lter. Finally, we would like to experiment some applications using the

soft object detection via saliency map.

Hierarchy transformation - The saliency map obtained under the hierarchy

transformation is based on the extinction values de�ned on the set of local minima.

A major perspective is to develop more sophisticated method to post-process this

saliency map, so that it represents a better hierarchy of segmentation. Another

perspective is to compute the saliency map using the topological persistence.

We further consider to develop more applications of the framework of shape-

based morphology.

Feature extraction on point-sampled surfaces - A minimum spanning

tree (MST) is used in the application of feature extraction on point-sampled sur-

faces [Pauly 2003]. The MST is constructed on a set of selected feature nodes among

a set of given points. The short branches of this MST correspond to artefacts that

do not describe salient features. In [Pauly 2003] the authors proposed to prune

these branches based on the branch importance, given as the length of the branch
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multiplied by the product of all edge weights. The �ltering aspect of the framework

of shape-based morphology might give a more robust �ltering result.

Speci�c structure detection in document image analysis - Some spe-

ci�c structures might be useful for document image analysis, such as the separation

lines, and background boxes. Those structures are usually present in tree represen-

tations. The aspect of object detection/segmentation might be interesting in this

case. Meanwhile, the relevant object detection/segmentation provides a simpli�ed

tree representation, the structure of the simpli�ed tree might be useful for optical

character recognition.

Saliency detection - One possible application of this framework is to apply

the attribute map de�ned on regions to saliency detection [Itti 1998]. The better

localization of salient regions might improve the result of saliency detection.
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