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Abstract. In this paper, we propose a fast automatic method that seg-
ments white matter hyperintensities (WMH) in 3D brain MR images,
using a fully convolutional network (FCN) and transfer learning. This
FCN is the Visual Geometry Group neural network (VGG for short)
pre-trained on ImageNet for natural image classification, and fine tuned
with the training dataset of the MICCAI WMH Challenge. We consider
three images for each slice of the volume to segment: the T1 slice, the
FLAIR slice, and the result of a morphological operator that emphasizes
small bright structures. These three 2D images are assembled to form
a 2D color image, that inputs the FCN to obtain the 2D segmentation
of the corresponding slice. We process all slices, and stack the results to
form the 3D output segmentation. With such a technique, the segmen-
tation of WMH on a 3D brain volume takes about 10 seconds including
pre-processing. Our technique was ranked 6-th over 20 participants at
the MICCAI WMH Challenge.

Keywords: 3D brain MRI · lesion segmentation · white matter hyper-
intensities · mathematical morphology · fully convolutional network.

1 Introduction

1.1 Context

This work has been done in the context of the MICCAI WMH Challenge5. The
aim was to provide a fully automated pipeline for the segmentation of White
Matter Hyperintensities (WMH) of vascular origin. WMH are the consequences
of small vessel diseases and are visible on brain MR images [24]. Small vessel

5 http://wmh.isi.uu.nl

http://wmh.isi.uu.nl


Hospital Scanner Number of
training images

Number of test
images

UMC Utrecht 3T Philips Achieva 20 30

NUHS Singapore 3T Siemens TrioTim 20 30

VU Amsterdam
(AMS)

3T GE Signa HDxt 20 30

3T Philips Ingenuity 0 10

1.5T GE Signa HDxt 0 10

Table 1. Overview of the challenge database.
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Fig. 1. Illustration of 3D-like color image and associated segmentation used in [25].

diseases are involved in cerebrovascular diseases and are a cause of cognitive
decline and functional loss during ageing [16]. Studies of WMH parameters (vol-
ume, shape, etc.) can hence be a key for diagnosis and follow-up for patients
under treatment for dementia and neurodegenerative diseases.

The visual analysis of images to detect WMH is a difficult process and au-
tomated methods could helpfully assist diagnosis [1]. However, the evaluation
and comparison of automated WMH segmentation techniques remain difficult
because of the diversity of datasets and evaluation criteria [1]. The aim of the
MICCAI WMH Challenge was to compare automated WMH segmentation tech-
niques. This comparison yields a ranking of the techniques applied on data ac-
quired from different scanner platforms (different origins, different resolutions,
etc). Data used during the challenge originated from three hospitals and five
different scanners as shown in Tab. 1. A training set of 60 scans was provided
by the organizer and the testing set of 110 scans remained secret.

1.2 Related Work

WMH segmentation has always been challenging, and it appears to be really
complicated to obtain a reliable fully automated method [1, 4]. Indeed, a Dice
similarity coefficient will be considered as good if it is higher than 0.7 [1]. The
problem of WMH segmentation can be considered with several approaches. The
FLAIR modality seems to be one of the best for this kind of segmentation: it
is possible to segment the hyperintensities with an optimal FLAIR intensity
threshold based on the analysis of histograms as described by Jack et al. [7].
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Fig. 2. Architecture of the proposed network. We fine tune it and combine linearly
fine to coarse feature maps of the pre-trained VGG network [22]. Note that each color
image (Input) is built from the slice n of the T1 and FLAIR sequences, and from a
pre-processing result.

Some methods rely on random Markov fields, either using FLAIR [9] or some
other modality [21]. In [15], morphological operators and max-tree represen-
tations are used to segment the WMH in newborn T2 brain images, but this
method is not fully automated. As machine learning really improved the results
of some segmentation tasks, some new methods emerged using supervised ma-
chine learning procedures or unsupervised approaches. In [5] WMH segmentation
is performed using CNN with anatomical location information, and in [6] using
transfer learning with a domain adaptation and patches, reaching a Dice score of
0.76. The authors suggested the idea to replace their CNN network with a FCN
one, for example U-Net [17]. In a previous work published in the International
Conference on Image Processing (ICIP) in 2017 [25], 3D brain MR volumes were
segmented using fully convolutional network (FCN) and transfer learning. The
network used for transfer learning is VGG (Visual Geometry Group) [22], pre-
trained on the ImageNet dataset. It takes as input a 2D color image that is
here a 3D-like image, composed of 3 consecutive slices of the 3D volume (see
Fig. 1). This method uses only one modality, and reaches good results for brain
segmentation.
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Fig. 3. A morphological connected operator (here an opening) based on a tree-based
image representation.

For this challenge, we extended this previous work on brain MRI segmenta-
tion [25], leveraging the power of a fully convolutional network pre-trained on a
large dataset and later fine-tuned on the training set of the challenge. The main
contributions include:

1. a preprocessing technique based on mathematical morphology which en-
hances small lesions to improve their segmentation;

2. a merging technique which enables the input of several modalities (T1,
FLAIR and custom preprocessing) in the segmentation chain for each slice.

An overview of the proposed method is given in Fig. 2. The method is fully
automatic, and uses both T1 and FLAIR sequences. The details of the whole
pipeline are given hereafter. This method is really fast as about 10 seconds are
needed to process a complete scan volume, and also efficient: we reached the 6th
place during the MICCAI WMH Challenge.

2 Method Description

2.1 Forewords on Mathematical Morphology

Whereas the most popular operators of mathematical morphology (MM) rely
on structuring elements, the class of “connected operators” does not necessar-
ily [11, 20]. This class is very interesting because those operators do not shift
object contours (they cannot create some new contours, they just suppress some
existing ones). Some connected operators can be easily defined from some tree-
based representations of a gray-level image [8,18,19]; such image representations



(a) Original FLAIR image (b) area opening (c) top-hat result (inverted);
pre-processed FLAIR

(d) Color image without
the top-hat component

(e) Color input image (f) Reference segmentation

Fig. 4. Illustration of the top-hat procedure.

express the inclusion of the connected components obtained by thresholding the
image. Note that computing, storing, and processing such a component tree is
very efficient [2, 14]. In the following, we rely on the max-tree representation,
denoted by Tmax, obtained by upper thresholding. Such a tree is displayed in
Fig. 3 (top right). If we prune this tree, such as in Fig. 3 (bottom right), we
can reconstruct the function depicted in Fig. 3 (bottom left). In the following,
we filter out any component of the max-tree which size (or area, i.e., number of
pixels) is below a threshold N , which leads to an area opening [23]. In all our
experiments, we set N to 25 pixels.

In Fig. 4(b), such an operator was applied on the image of Fig. 4(a). In this
result, some small bright components are removed, without the rest of the image
being modified (it is a connected operator); let us also note that this operator
has the ability to filter out low-contrasted objects in the same way as it does
with high-contrasted ones. The removed components correspond to small spots
of white matter intensities. The residue of this filtering step, i.e., the result minus
the input, is called an area top-hat; it is depicted in Fig. 4(c).



2.2 Pre-Processing

We use the bias field corrected FLAIR image and the bias field corrected T1
image aligned with FLAIR. The main issue with WMH segmentation is the
segmentation of small lesions. An idea to help the network find the lesions is to
enhance them.

We first perform a requantization of voxel intensity values on 8 bits. The
FLAIR slices are filtered using a morphological operator (an area opening),
so that small lesions are filtered out, and we compute the residue (difference
between the original FLAIR image and the filtered one); in this final image,
called “pre-procesed FLAIR” in the following and illustrated in Fig. 4(c), small
lesions are particularly visible and large ones do not appear.

2.3 Deep FCN for WMH Segmentation

Fully convolutional network (FCN) and transfer learning have proved their effi-
ciency for natural image segmentation [12]. In a previous paper [25], we proposed
to rely on this method to segment 3D brain MR images, although those images
are very different from natural images. As it was a succes, we adapted it to WMH
segmentation. We rely on the 16 layers VGG network [22], which was pre-trained
on millions of natural images of ImageNet for image classification [10]. For our ap-
plication, we keep only the 4 stages of convolutional parts called “base network”
and discard the fully connected layers at the end of VGG network. This base
network is mainly composed of convolutional layers: zi = wi × x + bi, Rectified
Linear Unit (ReLU) layers for non linear activation function: f(zi) = max(0, zi),
and max pooling layers between two successive stages, where x is the input of
each convolutional layer, wi is the convolution parameter, and bi is the bias term.
The three max pooling layers divide the base network into four stages of fine to
coarse feature maps. Inspired by the work in [12, 13], we add specialized convo-
lutional layers (with a 3×3 kernel size) with K (e.g. K = 16) feature maps after
the convolutional layers at the end of each stage. All the specialized layers are
then rescaled to the original image size, and concatenated together. We add a
last convolutional layer with kernel size 1×1 at the end. This last layer combines
linearly the fine to coarse feature maps in the concatenated specialized layers,
and provides the final segmentation result. The proposed network architecture
is schematized in Fig. 2.

The architecture described above is very similar to the one used in [13] for
retinal image analysis, where the retinal images are already 2D color images.
For our application, the question amounts to how to prepare appropriate inputs
given that a brain MR image is a 3D volume. To get RGB input images, we
propose to use 2D slices from different modalities. Precisely, to form an input
artificial color image for the pre-trained network to segment the nth slice, we use
the slice n of FLAIR, of the T1 and of the pre-processed FLAIR as the three
different color channels of a 2D color image. The green, blue and red channels
thus carry different information; note that the match “particular information /
chosen channel” does not matter for the network at end, except that this match



has to remain always the same in the learning and testing stages. This process
is depicted in Fig. 2 (left). Each 2D color image thus forms a representation of a
part (a slice of FLAIR and T1) of the MR volume. Using such a 2D representation
avoids the expensive computational and memory requirements of fully 3D FCN.

For the training phase, we use the multinomial logistic loss function for a
one-of-many classification task, passing real-valued predictions through a soft-
max to get a probability distribution over classes. During training, we use the
classical data augmentation strategy by scaling and rotating. Each channel of
the training images is then centered (we subtract 127 to values to ensure input
value are within the [−127, 127] range). We fine tune the network for the first
50k iterations using a learning rate of 10−8, and the last 100k with a smaller
learning rate of 10−9. We rely on stochastic gradient descent to minimize the
loss function with a momentum of 0.99 for the first 50k iterations and 0.999 for
the next 100k, and a weight decay of 0.0005. The loss function is averaged over
20 images.

At test time, after having pre-processed the 3D volume (requantization), we
prepare the set of 2D color images. Then we subtract 127 for each channel, and
pass every image through the network.

We run the train and test phases on a GPU card: NVIDIA GeForce GTX 1080

Ti, having 11Go. The training phase lasts 4 hours while the testing one lasts
less than 10 seconds per volume. The 4 hours of the learning remains reasonable,
and the network can be learned again if scans from new machines are provided.
It could be useful, especially if the new scans are different (resolution, contrast,
etc.).

The output of the network for one slice during the inference phase is a 2D
segmented slice. After processing all the slices of the volume, all the segmented
slices are stacked to recover a 3D volume with the same shape as the initial
volume, and containing only the segmented lesions.

Last, let us remark that, in the case of small lesions, the use of multi-modality
can be an important key. Indeed, the small lesions are not present on a lot of
slices, thus limiting the interest of 3D representations. The use of combination of
T1 and FLAIR images for one slice gives more information for lesion detection.
As the proportion of small lesions is small compared to the total number of pixels,
every information that can be discriminant for lesion detection is important.

3 Experiments and Results

This section presents the experiments and results obtained, during the develop-
ment of our method first (using the training dataset), and then the results of
the challenge. The metrics used to evaluate the results are:

– Dice Similarity Coefficient,
– Hausdorff distance (modified, 95th percentile, in mm) [3],
– Average volume difference (in percentage),
– Sensitivity for individual lesions, or recall (in percentage),



Type Dice ↑ AVD ↓ Lesion
Detection ↑ F1 score ↑

3D-like 0.72 23.90 0.38 0.46

2D w/o top-hat 0.72 28.24 0.39 0.48

2D with top-hat 0.75 22.63 0.61 0.63

Table 2. Quantitative comparison of the influence of the top-hat on the pre-
competition dataset. We submitted the 2D with top-hap method for the challenge.
In this table and in the following ones, ↑ (resp. ↓) means that a higher (resp. lower)
value is better.

Origin Dice ↑ H95 ↓ AVD ↓ Recall ↑ F1 ↑

UMC Utrecht 0.74 11.22 19.07 0.70 0.66

NUHS Singapore 0.77 8.28 17.64 0.61 0.68

AMS GE 3T 0.75 6.75 21.91 0.62 0.71

AMS GE 1.5T 0.73 10.94 16.66 0.60 0.71

AMS Philips 3T 0.50 70.27 46.33 0.57 0.53

Weighted average 0.73 14.54 21.71 0.63 0.67

Rank [0 . . . 1] ↓ 0.122 0.180 0.004 0.352 0.159

Table 3. Results of our method on the challenge dataset. The five first lines are the
results for each metric of each pool of data. The sixth line is the weighted average of
each metric. The last line corresponds to the rank for each metric.

– F1-score for individual lesions: 2PR/(P+R), where P and R are respectively
the precision and the recall.

3.1 Development Phase

In this part, we used the 60 scans from the training set of the challenge to
validate and tune our approach. Those scans were acquired in three hospitals
using three scanners from different vendors (see Tab. 1).

Training. We trained our model on 30 scans (10 from each hospital), randomly
chosen. The model was trained using the parameters described in the previous
section.

Testing. We tested on the 30 remaining scans. We measured 4 parameters using
the code provided by the organizers: the dice coefficient, the average volume
distance (AVD), the sensitivity for individual lesion detection and the F1-score
for individual lesions. The results are shown in Tab. 2, line 3.

An illustration of our segmentation results, with a qualitative comparison
to the reference segmentation, can be found in Fig. 5. False negatives and false
positives are very reduced.



Team Rank ↓ DSC ↑ H95 ↓ AVD ↓ Recall ↑ F1 ↑
nlp logix 0.0485 0.77 7.16 18.37 0.73 0.78

k2 0.1368 0.77 9.79 19.08 0.59 0.70

ipmi-bern 0.2498 0.69 9.72 19.92 0.44 0.57

misp 0.1659 0.72 14.88 21.36 0.63 0.68

lrde 0.1635 0.73 14.54 21.71 0.63 0.67

cian 0.0366 0.78 6.82 21.72 0.83 0.70

sysu media 0.0076 0.80 6.30 21.88 0.84 0.76

achilles 0.2962 0.63 11.82 24.41 0.45 0.52

nic-vicorob 0.0735 0.77 8.28 28.54 0.75 0.71

tig 0.3858 0.60 17.86 34.34 0.38 0.42

scan 0.2762 0.63 14.34 34.67 0.55 0.51

knight 0.4159 0.70 17.03 39.99 0.25 0.35

skkumedneuro 0.3492 0.58 19.02 58.54 0.47 0.51

tignet 0.3802 0.59 21.58 86.22 0.46 0.45

nist 0.4747 0.53 15.91 109.98 0.37 0.25

text class 0.5725 0.50 28.23 146.64 0.27 0.29

nih cidi 0.2697 0.68 12.82 196.38 0.59 0.54

upc dlmi 0.4337 0.53 27.01 208.49 0.57 0.42

neuro.ml 0.5960 0.51 37.36 614.05 0.71 0.21

hadi 0.8886 0.23 52.02 828.61 0.58 0.11

Table 4. Competition results, sorted with respect to the AVD metric.

Validation of the top-hat 2D choice. To evaluate the influence of the top-hat and
the 2D input on our results, we trained and tested with and without the top-hat
on 2D images (the last channel was replaced by the same slice from T1) and
we tested the 3D-like approach from our previous work [25]. Results are shown
in Tab. 2. The results of the 3D-like approach and of the 2D approach without
top-hat are quite similar. The lesion detection is a little bit better for the 2D
combination, but this is not significant. The 3D information is hence not rele-
vant for this application. The 2D approach including the top hat image slightly
improved the Dice and the AVD, but the best improvement is for the lesion de-
tection. On this dataset, the measurement of the sensitivity for individual lesion
raised from 0.38% or 0.39% to 0.61% thanks to the 2D top-hat procedure. The
small lesions enhancement indeed helped the detection of lesions.

3.2 Challenge Results

The testing dataset of the MICCAI WMH Challenge remained secret. It was
composed of 110 scans of patients from three hospitals and five different scanners
from three vendors (see Tab. 1).

The metrics used for the evaluation are the five metrics described at the
beginning of this section. The rank is included between 0 (best result) and 1
(worst result). It is computed by the organizers of the challenge as follows: the
teams are sorted from best to worst for each metric. The best team will be ranked
0 and the worst team 1. The other teams are ranked between 0 and 1 relative to
their performance within the range of that metric. The final rank is the average
of the 5 metric ranks. Tab. 3 shows the results of our method for the challenge.



(a) Original FLAIR
image

(b) Input RGB im-
age

(c) Reference seg-
mentation

(d) Comparison of
our segmentation
and the reference
one

Fig. 5. Example of results on each database. Note that the input images are different
as they come from different hospitals. From top to bottom: Utrecht, Singapore, and
Amsterdam. The intersection between the reference segmentation and our result is
depicted in yellow; the green pixels (false negatives) are in the reference segmentation
but not in our segmentation; the red ones (false positives) are in our segmentation but
not in the reference one.



(a) Dice similarity coefficient (b) Lesion recall (c) Hausdorff distance 95%
in mm

(d) Lesion F1 (e) Average volume difference in %

Fig. 6. Box plot for each metric depending on the origin of the scans; UMC Utrecht in
dark blue, NUHS Singapore in green, and VU Amsterdam (AMS): 3T GE Signa HDxt
in brown, 3T Philips Ingenuity in pink, and 1.5T GE Signa HDxt in light blue.

Our best performance is for the AVD where we have a really good rank as
shown in Tab. 3 and Tab. 4, while our worst score is for the lesion detection.
Based on these measurements, we can conclude that our method still misses
some lesions but that the ones it detects are close to the reference segmentation.
We were ranked 0.164 on the overall average and reached the 6th place of the
challenge. The top methods of the challenge also use deep learning for the seg-
mentation. They mainly use patches of images instead of whole images. About
the architecture used, it is interesting to notice that the winner of this challenge
uses a U-Net architecture with pre-processing and post-processing steps.

The analysis of the results against each data source reveals that our method
performs poorly on data acquired with the Philips scanner, for which no training
data were available and test images remained secret, preventing us from inves-
tigating further. We can also note that while no training data were available
for the GE 1.5T, our method still performs well on such data. The box plots
(Fig. 6) show the inhomogeneities of these results. Despite this, our method
appears quite stable among the different acquisition devices.



4 Conclusion

In the context of the MICCAI WMH Challenge, we developed a fast, robust and
automated method that segments white matter hyperintensities (WMH) in 3D
brain MR images. It is an extension of a method we proposed for brain MRI
segmentation. It uses fully convolutional network (FCN) and transfer learning
to segment the lesions. It takes as input 2D color images (3 channels), corre-
sponding to a slice of a 3D volume. The two first channels are composed of a
combination of FLAIR and T1 slices. To improve the detection of the lesions,
the last channel is a modified FLAIR slice where the small hyperintensities are
enhanced by a top-hat procedure. The FCN is the VGG network for natural
image classification, pre-trained on ImageNet database. We fine tuned it on the
training dataset of the challenge. When all slices are processed, the results are
stacked to reconstruct the resulting 3D segmented volume. During the develop-
ment phase, we validated the benefits of the 2D pre-processed images with small
lesions enhancement over the 2D images containing only T1 and FLAIR slices,
and also over a 3D-like image as in [25]. With such a technique, the complete
segmentation of WMH on a 3D brain volume takes about 10 seconds. During
the challenge, the organizers ran our method on their database composed of 5
different sets. Our results are quite stable over acquisition methods except for
the Philips scanner, thus exhibiting the reliability of our method. Finally, we
achieved a top score on the AVD metric with a rank of 0.004 (best is 0, worst is
1) for an AVD value of 21.71. Our overall score is 0.164 (average of the 5 metrics
used for the challenge), leading us to the 6th place. With our method, we could
consider other applications for other purposes such as the TUPAC16 MICCAI
Grand Challenge (Tumor Proliferation Assessment Challenge 2016) which aims
to predict the tumor proliferation score for breast cancer, or the Multimodal
Brain Tumor Segmentation Challenge (BraTS) which focuses on the prediction
of patient overall survival from the study of brain lesions.

Acknowledgments The authors want to thank the organizers of the White
Matter Hyperintensities Segmentation Challenge at MICCAI 2017, and the re-
viewers for their valuable comments.
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