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Artificial intelligence
for cybersecurity

Challenge:

Detecting complex attacks in dynamic digital environments

generating huge data volumes

lProtecting Data, protecting through data, Unistra/TPS

[ Teaching ] IML & Security, EPITA SCIA

lTrusted A, EPITA ING1
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Artificial Intelligence AGAINST

Attack Al systems in Machine Learning Evasion
Competition

Hyrum Anderson  Principal Architect, Trustworthy Machine Learning, Microsoft
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Al for Cybersecurity
Research challenges

How to model attacks for an explicable and
transferable detection ?

How to detect complex, multi-step attacks in
system traces ?

How to learn new attacks to adapt analysis
and prepare reaction ?

And how graphs can bring a solution ?
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Running example:
UNSW loT Botnet detection

Control Vulnerable Devices
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Selling E
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Results
J—, 5 Commands ¢
&! &! _ \‘ Scan
S Sy ls’urc_hasing | r—y
Services
\ User/Client L Infecction ~
Attack \Li
. Files =)
\_ Internet of Things (IoT) /
€ 10T Bots Malware

Bot-loT Dataset: Koroniotis, Nickolaos, et al. "Towards developing network forensic mechanism for botnet
activities in the 0T based on machine learning techniques." Mobile Networks and Management: 9th
International Conference, MONAMI 2017, Melbourne, Australia, December 13-15, 2017, Proceedings 9.

iClJBE Springer International Publishing, 2018. 29/06/2023 6

"loT Botnet Detection Using an Economic

" arXiv preprint arXiv:2302.02013 (2023).
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Deep Learning Model.




Modeling
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Technical Properties of Graphs

=>» Towards trusted graphs

Transparency

Accountability

Human oversight

Privacy and data governance J

Security J

Diversity, non discrimination and fairness |
—

»
'ClJBE 29/06/2025 8 Societal and environmental wellbeing
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Expert Knowledge
At the origin where ... attack graphs

Modeling

. Highlighted scenario IS buffer

overflow
CAN-2002-0364
Squid portscan
LICQ remote- CVE-2001-1030

Local buffer to-user
overflow CVE-2001-0439

Begin

. Highlighted scenario IS buffer

overflow ¥
CAN-2002-0364

Scripting remote-
to-user
CAN-2002-0193

Alarm has sounded

_.Squid portscan

Example Attack Graph CVE-2001-1030

LICQ remote-
to-user
CVE-2001-0439

Attack graphs for vulnerability analysis
- Formalism for attack representation
-> Patterns for Intrusion Detection Systems
-> Enable to share knowledge visually Alternative Attack Scenario Avoiding the IDS
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Attack graphs: Limitations

hOSt_ vulnerability
scanning information
—— —_—=
tools per host

Red Team

— Attack Graph

7

network information
network

Vulnerability Analysis of a Network is a tedious process

- Time costly
- Error prone
- Non-transferable

The meta-model has gone more complex

- Some automation
- Still relying on expert knowledge
- A lot of manual documentation

- Highly dependant on third party knowledge bases o

- Tool not available

-> Analysis tool uncoupled from detection or reaction

capability
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Generation Framework Based on System Topology, CAPEC, CWE, and CVE

Databases." Computers & Security 123 (2022): 102938.



An example with graphs:
Spoofing

— P USH bR 2

dical

iSensor
Board

Switch
rd Rl PN

| i B~ =\ Controller
) )
i - i : oS
3ac i Temp £CG i :gAttacker |
Medical Sensors Gateway ’

Network Control &
Visualization

WUSTL-EHMS-2020 testbed

-ab:0f:5b:94

Hady, Anar A., et al. "Intrusion detection system for healthcare systems using medical
and network data: A comparison study." IEEE Access 8 (2020): 106576-106584.
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Modeling

Pattern extraction through Cybergraph tool

https://gitlab.cri.epita.fr/laborato
ires/lse/research-devs/cybergraph

[ Graphseclearn ]

[ Cybergraph ]

Visualization x [
<« c @ ‘ O % 127.0.0.1:500 NN ‘ n @ ¢

Cybergraph Visualization
Current database in use : [EEIEI

e 9
https://gitlab.cri.epita.fr/laborato

192.168.1.1021€3.4.121 ©
e R 192.168.2.107
162 168 BBRI 1101 ires/lse/research-devs/graphseclearn

N\ Y 1927168.1.103

$ _——0
§~—To21683.114

P

102.168.3.116 e
192’%%%%%% 111
192 1%832/1;9/ . 19;";-5 1.z§ 4
.. L 2% B}y ",
1921682108 S f92'165'3'117 192.168.100.255 188.100.1
{
o ~ | 192.168.3.115 224.0.0.252 T
209.222.209.2 [ 23.32.54.33
1924 @8.1.104 / v
192.168.2.11Q%7 95 165 1745168.2.112 a0 1‘49 192,“3}8 06 ]
192.168.2.113 / 192.168.100.3
130.14.29.30 192.168.100:148 192.168.100.147
192.168.100.150
Database name iscx12jun v PageRank: ex:1.10 Weight: ex: 1000 IP: 11141
Protocol FTP v | Centrality aigorith kv uu|
rotocol entrality algornthm pageran ini iation: L SR
Graph structural queries ' o
—>Man in the Middle and Island Hopping e
- Uses GQL requests . .
- Low hanging fruits and dangerous patterns (but not

necessarily malicious)

§CU3E
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Detection
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The baseline:

Detection with Machine Learning

Visualisation of UNSW-loT-Botnet

Machine learning

- (Somewhat) stable knowledge corpus

- (not so) widely deployed

- Relies on paquet features (or any punctual data)
-> Unable to consider connections between machines

-> Unable to go beyond projection of past events
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Learning

Key features of ML for cybersecurity

[
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Hard points

Scalability

Heterogeneneous
Environments

Implementation
complexity

False positives
alert flood

Explainability Performance
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Open questions

What about:

Interactions ?

Scalability 7

\ Novel attacks ?
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Graph learning: Embedding

Principles
Low-dimensional space %
High-dimensional (continuous dense vectors) &
non-Euclidean domain g
o .
S Lo
5 &
9
g <
>3
gz
T .2
5%
2 o
€2
=Xy
89
28
Original 28
g graph G(V,E) =2
X ©
Embeddings

- Node2Vec, Graph2Vec, GraphSage
-> Takes the neighborhood into account
- Very static approach
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Graph learning: Embedding

Internals

A. Multi-hop neighborhood sampling B. Random walk-based node
neighborhood sampling

i source source
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Graph learning with GNN : Y ke
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Unsupervised Detection Y

60+ ¢
80f * "
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Graph learning Graph convolution t-SNE on scenel5 dataset

. @ ; Seny-supgmsed
classification loss
g L$emi-GCN

5-Scene_Ima

w0 Wwi(K)

Graph learnin

bosmen L R .. S bosmoSommimmal l_a;‘f’fs_________F_il_]‘?l_(_)ljl,l)_ll_l_l?"_?ll_-_. Graph learning

loss LaL

Convolution

as

GNN
-> Process is very specific to each problem
-> Graph extraction adds complexity
-> Ad hoc Graph learning layer !!
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Jiang, Bo, et al. "Semi-supervised learning with graph learning-convolutional networks." Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition. 2019.



Yet another application:

Phising detection

https: / /i thiih com/TriastanRilot/phishGNN
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Graph representation of two websites after crawling with depth=1. Graph on the left contains
multiple children URLs already crawled in previous iterations so their children are inserted in the
graph as nodes of depth 2. Graph on the right contains children URLs never crawled before.
Node in dark blue is the root URL, nodes in cyan and yellow are respectively URLs from the same
domain and different domain, while red nodes are URLs returning an error code (HTTP status not
in range 200-299)
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Embeddings of two models trained on our dataset. GCN2 without PhishGNN framework (left) and
with PhishGNN framework (right). Green: Benign; Red: Phishing

Linear SVM
Naive Bayes |

T
1877
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= Accuracy (%) ||
= 7

Feed Forward Network {92 =
Decision Tree | ]929 -

Logistic Regression {103 -
GON {9 -

RBF SVM -| ]93.9 -
kNN | 95.2 -

Random Forest | 95.8 -
PhishGNN - | 907

B8 90 92 94 96 98 100

Classification accuracies between traditional Machine
Learning methods, GCN and PhishGNN

JICU3E

Benign | Phishing | Total

Benign 688 3 691
Phishing 2 802 804
Total 690 805 1495

Confusion matrix for a test set of 1495 examples
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Bilot, Tristan, Grégoire Geis, and Badis Hammi. "PhishGNN: A Phishing
Website Detection Framework using Graph Neural Networks." (2022).
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Learning with human feedback

Attack graphs as daemon detectors
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https://publis.icube.unistra.fr/4-NDP16

Learning autonomously

Unsupervised learning with isolation forrests and community features

80000 140000
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ol
-0.60 -0.55
o ~070 Isolation forest score
V1i: V2:
* Difficulty dissociating attacks from other data by score e Highest detection scores are attacks only
* Most attacks remain a minority in their detection score range * Most attacks are majority in their detection score range

liClJBE 20/06/2023 24




Learning autonomously

Handling False Positives

"UGR-16 dataset
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Stability ipport20
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Leveraging graphs for learning novels
attacks

Reinforcement through human feedback

Unsupervised learning through discriminating features

False positive reduction through suitable scoring

A necessary — and efficient | - step towards explainable attack detection on heterogeneous networks
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Learning with trust

same_siv_rate s 0.4
gini = 0.786
samples = 466
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Graph learning
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Graph learning proves to be performant for key
issues in modeling, detection and learning

[ Scalability ]

Heterogeneneous
Environments

Implementation
complexity
False positives
alert flood

[ Explainability }
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