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Artificial intelligence
for cybersecurity

Challenge:

Detecting complex attacks in dynamic digital environments 

generating huge data volumes

Protecting Data, protecting through data, Unistra/TPS

ML & Security, EPITA SCIA

Trusted IA, EPITA ING1

Teaching
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Artificial Intelligence AGAINST 
cybersecurity ?
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AI for Cybersecurity
Research challenges

How to detect complex, multi-step attacks in 
system traces ?

How to learn new attacks to adapt analysis 
and prepare reaction ?

How to model attacks for an explicable and 
transferable detection ?

And how graphs can bring a solution ?
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Running example:
UNSW IoT Botnet detection

E
ls

a
y
e

d
, 
N

e
lly

, 
Z

a
g

 E
lS

a
y
e

d
, 
a

n
d

 M
a

g
d

y
 B

a
y
o

u
m

i.
 "

Io
T

 B
o

tn
e

t 
D

e
te

c
ti
o

n
 U

s
in

g
 a

n
 E

c
o

n
o

m
ic

 
D

e
e

p
 L

e
a

rn
in

g
 M

o
d

e
l.
"

a
rX

iv
 p

re
p

ri
n

t 
a

rX
iv

:2
3

0
2

.0
2

0
1

3
(2

0
2

3
).

Bot-IoT Dataset: Koroniotis, Nickolaos, et al. "Towards developing network forensic mechanism for botnet 

activities in the IoT based on machine learning techniques." Mobile Networks and Management: 9th 

International Conference, MONAMI 2017, Melbourne, Australia, December 13-15, 2017, Proceedings 9. 

Springer International Publishing, 2018.
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Modeling
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Technical Properties of Graphs

Transparency

Accountability

Human oversight
Privacy and data governance

Security

Diversity, non discrimination and fairness

Societal and environmental wellbeing

➔ Towards trusted graphs
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Expert Knowledge
At the origin where … attack graphs
Modeling

Example Attack Graph

Alternative Attack Scenario Avoiding the IDS
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Attack graphs for vulnerability analysis
→ Formalism for attack representation
→Patterns for Intrusion Detection Systems
→ Enable to share knowledge visually
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Attack graphs: Limitations

Vulnerability Analysis of a Network is a tedious process
→ Time costly
→ Error prone
→Non-transferable
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The meta-model has gone more complex
→ Some automation
→ Still relying on expert knowledge

→A lot of manual documentation
→Highly dependant on third party knowledge bases

→ Tool not available
→Analysis tool uncoupled from detection or reaction 

capability
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An example with graphs:
Spoofing
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Modeling
Pattern extraction through Cybergraph tool

https://gitlab.cri.epita.fr/laborato

ires/lse/research-devs/cybergraph

https://gitlab.cri.epita.fr/laborato

ires/lse/research-devs/graphseclearn

Cybergraph

Graphseclearn

Graph structural queries 
→Man in the Middle and Island Hopping
→Uses GQL requests
→ Low hanging fruits and dangerous patterns (but not 

necessarily malicious)
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Detection
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The baseline:
Detection with Machine Learning

Machine learning

→ (Somewhat) stable knowledge corpus
→ (not so) widely deployed
→Relies on paquet features (or any punctual data)
→Unable to consider connections between machines
→Unable to go beyond projection of past events

Visualisation of UNSW-IoT-Botnet
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Learning
Key features of ML for cybersecurity

Detection 
performance

Time 
performance

Feature 
importance

Detection
trade-offs
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Hard points

Explainability

Scalability

Performance

Implementation 
complexity

False positives
alert flood

Heterogeneneous
Environments
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Open questions

Interactions ?

Scalability ?

Novel attacks ?

What about:
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Graph learning: Embedding
Principles
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Embeddings
→Node2Vec, Graph2Vec, GraphSage
→ Takes the neighborhood into account
→Very static approach
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Graph learning: Embedding
Internals
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Graph learning with GNN
Unsupervised Detection
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t-SNE on scene15 dataset
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GNN
→Process is very specific to each problem
→Graph extraction adds complexity
→Ad hoc Graph learning layer !!
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Yet another application:
Phising detection

Classification accuracies between traditional Machine 
Learning methods, GCN and PhishGNN

Embeddings of two models trained on our dataset. GCN2 without PhishGNN framework (left) and 
with PhishGNN framework (right). Green: Benign; Red: Phishing

Confusion matrix for a test set of 1495 examples
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https://github.com/TristanBilot/phishGNN

Graph representation of two websites after crawling with depth=1. Graph on the left contains 
multiple children URLs already crawled in previous iterations so their children are inserted in the 
graph as nodes of depth 2. Graph on the right contains children URLs never crawled before. 
Node in dark blue is the root URL, nodes in cyan and yellow are respectively URLs from the same 
domain and different domain, while red nodes are URLs returning an error code (HTTP status not 
in range 200-299)
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Learning
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Learning with human feedback
Attack graphs as daemon detectors
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Morwilog
→ Stochatic process
→ Enables to push the border of noiseless detection
→Relies on feedback from human operator, for instance
through a dedicated monitoring tool

https://publis.icube.unistra.fr/4-NDP16
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Learning autonomously
Unsupervised learning with isolation forrests and community features

V2:
• Highest detection scores are attacks only
• Most attacks are majority in their detection score range

V1:
• Difficulty dissociating attacks from other data by score
• Most attacks remain a minority in their detection score range



29/06/2023 25

Learning autonomously
Handling False Positives

Is
o

la
ti

o
n

 f
o

re
st

 s
co

re



29/06/2023 26

Leveraging graphs for learning novels 
attacks

Reinforcement through human feedback

Unsupervised learning through discriminating features

False positive reduction through suitable scoring

A necessary – and efficient ! – step towards explainable attack detection on heterogeneous networks
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Conclusion
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Learning with trust
Decision trees

Machine learning Graph learning
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Graph learning proves to be performant for key 
issues in modeling, detection and learning

Explainability

Scalability

Performance

Implementation 
complexity

False positives
alert flood

Heterogeneneous
Environments
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Thanks !!
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