# Graph Analysis for forensics analysis

Security-Systems Summer Week 2023

Samedi 1 juillet 2023

**Pierre Parrend** 



29/06/2023

### Joint ML & Sec (unformal) Team EPITA/ICube



**Pierre Parrend** 



Badis Hammi



Nidà Meddouri



Rabih Amhaz



Aline Deruyver





Amani Abou Rida



Julien Michel



Majed Jaber



Côme Frappé-Vialatoux





### Artificial intelligence for cybersecurity

Challenge:

Detecting complex attacks in dynamic digital environments

generating huge data volumes



### Artificial Intelligence AGAINST cybersecurity ?





Attack Al systems in Machine Learning Evasion Competition

Hyrum Anderson Principal Architect, Trustworthy Machine Learning, Microsoft







### AI for Cybersecurity Research challenges

How to **model** attacks for an explicable and transferable detection ?

How to **detect** complex, multi-step attacks in system traces ?

How to **learn** new attacks to adapt analysis and prepare reaction ?

And how graphs can bring a solution ?





### Running example: UNSW IoT Botnet detection



Economic Elsayed, Nelly, Zag ElSayed, and Magdy Bayoumi. "IoT Botnet Detection Using an Deep Learning Model." *arXiv preprint arXiv:2302.02013* (2023).





LRE







### **Technical Properties of Graphs**

→ Towards trusted graphs



### Expert Knowledge At the origin where ... attack graphs

#### Modeling







### **Attack graphs: Limitations**







### An example with graphs: Spoofing





29/06/2023 11





### Modeling

#### Pattern extraction through Cybergraph tool



https://gitlab.cri.epita.fr/laborato Visualization XH ires/lse/research-devs/cybergraph ← → C' ŵ 127.0.0.1:5000/visualization … ⊠ ☆ III\ 🗉 🔹 Cybergraph Visualization Attacks graph Attacks table CASG Import **Graphseclearn** Current database in use : iscx12jun 192.168.1.102 168.4.121 https://gitlab.cri.epita.fr/laborato 192.168.2.107 192.168.221069.1.101 ires/lse/research-devs/graphseclearn 192.168.1.103 192.168.3.110 192.168.3.114 0.2.111 192.168.2.109 192.168.3.117 192.168.100.255 168 100 1 192.168.2.108 192.168.3.115 224.0.0.252 23.32.54.33 209.222.209.2 192.163.1.104 192.168.2.110 192.168.1.105168.2.112 192 168 100 6 192,168,100,149 192.168.2.113 192.168.100.3 130.14.29.30 192.168.100.148 192 168 100 147 192.168.100.150 1.1.1.1 Database name iscx12jun PageRank: ex: 1.10 Weight: ex: 1000 IP: Protocol FTP ✓ Centrality algorithm pagerank ✓ IP source IP destinatio Attack(s 192,168,100,148 PSCAN UDP 192,168,100.6 Graph structural queries 192.168.100.147 192 168 100.6 ['SCAN\_UDP']  $\rightarrow$  Man in the Middle and Island Hopping 192,168,100,149 192.168.100.6 I'SCAN\_TCP', 'SCAN\_UDP 192.168.100.150 192,168,100.6 (SCAN\_TCP', SCAN\_UDP'  $\rightarrow$  Uses GQL requests Anomaly Method: Isolation Forest Y From Date dd/mm/yyyy 🕅 To Date dd/mm/yyyy  $\rightarrow$  Low hanging fruits and dangerous patterns (but not













### The baseline: Detection with Machine Learning

29/06/2023

14

#### Visualisation of UNSW-IoT-Botnet



#### Machine learning

- $\rightarrow$  (Somewhat) stable knowledge corpus
- ightarrow (not so) widely deployed
- $\rightarrow$  Relies on paquet features (or any punctual data)
- ightarrow Unable to consider connections between machines
- ightarrow Unable to go beyond projection of past events





### Learning

#### Key features of ML for cybersecurity















29/06/2023 15

### Hard points



### **Open questions**

#### What about:







### **Graph learning: Embedding**

#### Principles



Xu, Mengjia. "Understanding graph embedding methods and their applications." *SIAM Review* 63.4 (2021): 825-853.

<u>Embeddings</u>

→ Node2Vec, Graph2Vec, GraphSage

ightarrow Takes the neighborhood into account

 $\rightarrow$  Very static approach





### **Graph learning: Embedding**

#### Internals



R

### **Graph learning with GNN**

#### Unsupervised Detection

Graph learning

P

Graph learning

laver



 $\rightarrow$  Process is very specific to each problem

 $x_2$ 

 $(x_4)$ 

GNN

 $\rightarrow$  Graph extraction adds complexity

 $(x_3)$ 

 $x_5$ 

Input layer

ightarrow Ad hoc Graph learning layer !!



 $x_1$ 

 $x_2$ 

S

 $x_3$ 

Graph output layer

TI



### Yet another application: Phising detection

https://github.com/TristanBilot/phishGNN



Graph representation of two websites after crawling with depth=1. Graph on the left contains multiple children URLs already crawled in previous iterations so their children are inserted in the graph as nodes of depth 2. Graph on the right contains children URLs never crawled before. Node in dark blue is the root URL, nodes in cyan and yellow are respectively URLs from the same domain and different domain, while red nodes are URLs returning an error code (HTTP status not in range 200-299)





Classification accuracies between traditional Machine Learning methods, GCN and PhishGNN





Embeddings of two models trained on our dataset. GCN2 without PhishGNN framework (left) and with PhishGNN framework (right). Green: Benign; Red: Phishing

|          | Benign | Phishing | Total |
|----------|--------|----------|-------|
| Benign   | 688    | 3        | 691   |
| Phishing | 2      | 802      | 804   |
| Total    | 690    | 805      | 1495  |

Confusion matrix for a test set of 1495 examples





40 20

-40

-60







### Learning with human feedback

Attack graphs as daemon detectors







### Learning autonomously

Unsupervised learning with isolation forrests and community features



#### <u>V1:</u>

- Difficulty dissociating attacks from other data by score
- Most attacks remain a minority in their detection score range

- <u>V2:</u>
- <u>Highest detection scores are attacks only</u>
- Most attacks are majority in their detection score range





### Learning autonomously

#### Handling False Positives



# Leveraging graphs for learning novels attacks

Reinforcement through human feedback

Unsupervised learning through discriminating features

False positive reduction through suitable scoring

A necessary – and efficient ! – step towards explainable attack detection on heterogeneous networks









### Learning with trust



# Graph learning proves to be performant for key issues in modeling, detection and learning



## Thanks !!

# EPITA

ÉCOLE D'INGENIEURS EN INFORMATIQUE