
How C++ Exceptions work
Darius Engler

July 1, 2023



Overview

• The problem of implementing exceptions

• How it's described by the Itanium C++ ABI

• Exception Handling Representation in the ELF Format

• Alternative to std::exception



Simple Example

• The problem:
• We need to know:

• Which object to destroy

• Which handler to take

• If the handler is in the caller, how to get to the caller



Overview of how it works

• Scan the current function for exception handlers
• Encode try / catch blocks in the binary

• If none is found, go to previous frame
• Encode stack unwinding information in the binary



Destroying the right objects



Finding the right handler

foo



Stack unwinding



ELF sections

SHDR

PHDR



.eh_frame_hdr

• Based on DWARF

• List of FDE Pointers



Frame Descriptor Entry (FDE) /
Common Information Entry (CIE)

• FDE
• PC Range

• LSDA pointer

• Stack unwinding info

• CIE
• Stack unwinding info

• Personality function



Language-Specific Data Area (LSDA)

Try block
catch address

• Parsed by the personality function

• try/catch blocks of each function



Language-Specific Data Area (LSDA)

• Information about which type of exception is accepted by each catch 
block



Call frame instructions (CFI)

• List of instructions

• Used to compute the CFA

 (Canonical Frame Address)

• Used to restore previous value of 
registers



Call frame instructions (CFI)



To summarize

• Walk through all the object files in the process
• Use either /proc/self/maps or libc functions (e.g. "dl_iterate_phdr")
• Check whether the current IP is within the object's address range
• Find the EH_FRAME PHDR
• Parse .eh_frame_hdr
• Walk through each FDE from the binary search table

• Parse associated CIE
• Check that the current IP is within the range of the current FDE
• Call the personality function

• Walk through each LSDA entry to find the try block that matches

• Check if the exception typeinfo matches the type filter of the catch block

• If the personality doesn't find any handler, go to previous stack frame
• Run the CFI program of the CIE and the FDE to compute the last PC



Fun fact about CFI instructions



Fun fact about CFI instructions

It's turing complete!



Demo



Alternative to std::exception

• C++23 std::expected

• Container for expected result / error code

• Can be used in combination with std::visit / std::variant





Sources

• https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html

• http://itanium-cxx-abi.github.io/cxx-abi/exceptions.pdf

• http://web.archive.org/web/20220524085632/https://www.intel.com/content/dam/www/public/us/en/documents/guid
es/itanium-software-runtime-architecture-guide.pdf

• https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html

• https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html

• https://dwarfstd.org/doc/DWARF5.pdf

• https://wiki.dwarfstd.org/Exception_Handling.md

• https://martin.uy/blog/understanding-the-gcc_except_table-section-in-elf-binaries-gcc

• https://en.cppreference.com/w/cpp/utility/variant/visit

• https://en.cppreference.com/w/cpp/utility/expected

https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
http://itanium-cxx-abi.github.io/cxx-abi/exceptions.pdf
http://web.archive.org/web/20220524085632/https:/www.intel.com/content/dam/www/public/us/en/documents/guides/itanium-software-runtime-architecture-guide.pdf
http://web.archive.org/web/20220524085632/https:/www.intel.com/content/dam/www/public/us/en/documents/guides/itanium-software-runtime-architecture-guide.pdf
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
https://dwarfstd.org/doc/DWARF5.pdf
https://wiki.dwarfstd.org/Exception_Handling.md
https://martin.uy/blog/understanding-the-gcc_except_table-section-in-elf-binaries-gcc
https://en.cppreference.com/w/cpp/utility/variant/visit
https://en.cppreference.com/w/cpp/utility/expected


Questions?


	Slide 1: How C++ Exceptions work
	Slide 2: Overview
	Slide 3: Simple Example
	Slide 4: Overview of how it works
	Slide 5: Destroying the right objects
	Slide 6: Finding the right handler
	Slide 7: Stack unwinding
	Slide 8: ELF sections
	Slide 9: .eh_frame_hdr
	Slide 10: Frame Descriptor Entry (FDE) / Common Information Entry (CIE)
	Slide 11: Language-Specific Data Area (LSDA)
	Slide 12: Language-Specific Data Area (LSDA)
	Slide 13: Call frame instructions (CFI)
	Slide 14: Call frame instructions (CFI)
	Slide 15: To summarize
	Slide 16: Fun fact about CFI instructions
	Slide 17: Fun fact about CFI instructions
	Slide 18: Demo
	Slide 19: Alternative to std::exception
	Slide 20
	Slide 21: Sources
	Slide 22: Questions?

