Incremental graph processing for detection of network attacks

Younes Benreguieg¹ Pierre Parrend¹

¹Security and Systems group LRE - EPITA Research Laboratory

Research Seminar, 29 June 2023

How can we effectively manage anomaly detection and visualization in large-scale, complex network traffic data?

- What mechanisms can we use to detect specific attack patterns in network traffic data?
- How can we effectively identify anomalies in network traffic data given their volume and complexity?
- How can we create an effective data visualization and analysis tool for these data?

How can we effectively manage anomaly detection and visualization in large-scale, complex network traffic data?

- What mechanisms can we use to detect specific attack patterns in network traffic data?
- How can we effectively identify anomalies in network traffic data given their volume and complexity?
- How can we create an effective data visualization and analysis tool for these data?

Overall Problem

The goal is to work with very large datasets.

2023

Application Demonstration

2 Cybergraph and its Architecture

- Architecture
- Attack patterns
- CI/CD & Deployment

3 Anomalies detection

- Anomalous
- AMAD
- Benchmark

4 Future Works and Conclusion

Application Demonstration

2 Cybergraph and its Architecture

- Architecture
- Attack patterns
- CI/CD & Deployment

Anomalies detection

- Anomalous
- AMAD
- Benchmark

Future Works and Conclusion

Let's do a demo!

Cybergraph

Cybergraph

Figure: Cybergraph with UGR'16 sample dataset

- ∢ ⊒ →

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Cybergraph

Figure: Cybergraph in forensic mode

Y. Benreguieg (Sys&Secu)

イロト イヨト イヨト イヨト

Application Demonstration

2 Cybergraph and its Architecture

- Architecture
- Attack patterns
- CI/CD & Deployment

Anomalies detection

- Anomalous
- AMAD
- Benchmark

Future Works and Conclusion

Cybergraph: Architecture

Y. Benreguieg (Sys&Secu)

9 / 25

LRE

- detect_dos(): Detects Denial of Service attacks by identifying unusual high traffic from a single source.
- detect_ddos(): Detects Distributed Denial of Service attacks by spotting coordinated high traffic from multiple sources.
- detect_scan_tcp(): Detects TCP scanning activities typically used for identifying network vulnerabilities.
- detect_scan_udp(): Detects UDP scanning activities which are usually indicative of reconnaissance efforts.

Remark

Graph patterns will be enhanced with the trustseclearn library.

2023

CI/CD & Deployment

Figure: CI pipeline

Figure: Azure Cosmos DB

Y. Benreguieg (Sys&Secu)

Application Demonstration

2 Cybergraph and its Architecture

- Architecture
- Attack patterns
- CI/CD & Deployment

3 Anomalies detection

- Anomalous
- AMAD
- Benchmark

Future Works and Conclusion

Comparing GAD algorithms

Y. Benreguieg (Sys&Secu)

Method: It approximates the original data (attributes and adjacency matrix) through CUR decomposition, which enables more interpretable selection of instances and attributes.

Regularization: Utilizes regularization terms γ (for residuals and network-attribute correlation) and ω (for row and column sparsity of selection matrix).

Result: Ranks anomalies based on residual errors.

Method: It approximates the original data (attributes and adjacency matrix) through CUR decomposition, which enables more interpretable selection of instances and attributes.

Regularization: Utilizes regularization terms γ (for residuals and network-attribute correlation) and ω (for row and column sparsity of selection matrix).

Result: Ranks anomalies based on residual errors.

Complexity

iterations × $(O(n^2d) + O(n^2))[2]$

ANOMALOUS: GAD on Attributed Networks

Figure: A toy example for anomaly detection on representative attributes via attribute selection.[2]

LRE

AMAD: GAD on time-evolving attributed networks

return for next observation

Figure: The workflow of the AMAD method [3]

• • • • • • • • • • • •

- **Incremental Laplacian Matrix Update**: Row and column update per new data point, time complexity $O(n^2)$ to O(n).
- **Incremental W and R Updates**: Utilizes updated Laplacian, potential complexity reduction to O(n).
- **Intermediate Results Caching**: Accelerate later iterations, potential O(1) calculations.

AMAD Optimization: Incremental Updating and Caching

Figure: AMAD method description

< □ > < □ > < □ > < □ > < □ > < □ >

	nodes	edges	attributes	anomaly
Wiki	2.405	10.976	4.973	1%
UGR'16 Sample	48219	55742	14	1.33%

Table: Informations about used datasets [3]

	Anomalous	AMAD	AMAD(Opti)
Wiki	0.78	0.82	0.82
UGR'16 Sample	0.52	0.79	0.80

Table: Detection performances, AUC values

Wiki 579.2	20(s)	147.30(s)	95.5(s)	+54,2%
UGR'16 Sample 1542.	.57(s)	950.49(s)	652.10(s)	+45,8%

Table: Average running time

Application Demonstration

2 Cybergraph and its Architecture

- Architecture
- Attack patterns
- CI/CD & Deployment

Anomalies detection

- Anomalous
- AMAD
- Benchmark

Future Works and Conclusion

- **Cybergraph** and its attack pattern detection functions effectively handle large network traffic datasets.
- Anomalous and AMAD optimize anomaly detection.
- Incremental updating and caching techniques in AMAD notably reduce computational complexity.

• Cybergraph

- Pursue the test phase with bigger datasets
- Integrate trustseclearn library
- Allow pattern detectors to be added via the cybergraph's front-end
- Deploying cybergraph with partners
- Add GAD algorithms
- Add a supervisor model, using patterns and anomalies

• AMAD

- Test with different datasets
- Parallelization
- Move to C++

Figure: Supervisor generating attacks decisions structure

Image: Image:

- Stephen Ranshous et al. "Anomaly detection in dynamic networks: a survey". In: Wiley Interdisciplinary Reviews: Computational Statistics 7.3 (2015), pp. 223–247.
- [2] Zhen Peng et al. "ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Networks.". In: IJCAI. 2018, pp. 3513–3519.
- [3] Luguo Xue et al. "An anomaly detection framework for time-evolving attributed networks". In: *Neurocomputing* 407 (2020), pp. 39–49.

Thank you for your attention!

Questions?

Y. Benreguieg (Sys&Secu)