
use v5.36

Marc Espie <espie@openbsd.org>

June 28, 2023

1 / 27

perl
From some time now, perl has got "experimental features", which is a good and a bad
thing

good
Perl is still evolving
it gets all the good stuff from perl6 over the years
For instance yada yada

bad
but they are experimental
so you can’t use them in production
see switch operator

2 / 27

"Yada yada"

Acknowledges "fill in the blanks Rapid Application Developement"
"Yada Yada" is just ...

1 if ($verbose && ...) {
2 do_something();
3 }
4

5 for my $i (@list) {
6 if ($i =~ m/shouldn't happen/) {
7 ...;
8 }
9 }

That’s actually very useful

3 / 27

given/when

There was some kind of "pattern matching" related to keywords given and when that
was available in perl, very similar to what pattern matching looks like in ocaml.
But for various reasons, the experiment didn’t pan out! so anyone who’s been using
these is up shit creek!

4 / 27

semantic versioning

For a long time, use has been used (lol) to indicate semantic variations on perl (like
use strict;,
use warnings;
or more complicated forms, e.g.,
use feature qw(say);
The most interesting variation is
use v5.something;
which does enable various thingies.

fight or flight
For production code, it makes sense to use a recent version and its improvements...
as long as they’re not experimental !!!

5 / 27

Prototypes

It’s totally different from other languages.
Prototypes are used to “create syntax” or rather reproduce built-in behaviors.
Completely esoteric syntax

6 / 27

Example I

1 sub mypush (\@@)
2 {
3 }
4 ...
5 mypush @l, 1, 2, 3;
6

7 / 27

Example II
1 sub try(&@)
2 {
3 my ($try, $catch) = @_;
4 eval { &$try };
5 if ($@) {
6 &$catch;
7 }
8 }
9

10 sub catch(&)
11 {
12 return $_[0];
13 }
14

15 try {
16 ...
17 } catch {
18 ...
19 } 8 / 27

Signatures

so what’s called "prototypes" in other languages is called "signatures" in perl !
it’s ambiguous wrt prototypes
so accordingly prototypes require annotation e.g.,

1 sub try :prototype(&@)($try, $catch)
2 {
3 eval { &$try() };
4 if ($@) {
5 &$catch;
6 }
7 ...
8 }
9

10 sub catch :prototype(&)($code)
11 {
12 return $code;
13 }
14

9 / 27

Converting to 5.36: other stuff

Every prototype needs to be made unambiguous so, sub foo(...) → sub foo
:prototype(...).
Code calls may need explicit parentheses: stuff like

1 &$code;

does call code in the same context as the parent with the same parameters. Use
1 &$code();

instead.
Object calls through indirect syntax has been deprecated.

10 / 27

Sometimes useful

1 package OpenBSD::PackingElement::Cwd;
2 sub find_extractible # forwarder
3 {
4 &OpenBSD::PackingElement::Meta::find_extractible;
5 }

11 / 27

Indirect syntax ?

Again linked to built-ins.
Printing to a file looks like

1 print $fh "result is ", $i, "\n";

as opposed to the less fancy
1 $fh->print("result is ", $i, "\n");

12 / 27

Converting to 5.36: signatures

Modelled after C++
named scalar parameters like $x

unnamed parameters if unused
default values for parameters with $x = value

But perl!
Can slurp renaming parameters with either

1 sub f($x, $y, @l)

or
1 sub f($x, $y, %h)

13 / 27

What about @_

1 Implicit use of @_ in subroutine entry with signatured subroutine
2 is experimental at a line 5.

14 / 27

Why use signatures I

It makes perl code looks almost normal! before
1 sub set
2 {
3 my ($self, $set) = @_;
4 delete $self->{object};
5 $self->{set} = $set;
6 return $self;
7 }
8
9 sub object

10 {
11 my ($self, $object) = @_;
12 delete $self->{set};
13 $self->{object} = $object;
14 return $self;
15 }
16
17 sub what
18 {
19 my ($self, $what) = @_;
20 $self->{what} = $what;
21 return $self;
22 }
23
24 sub new
25 {
26 my $class = shift;
27

15 / 27

Why use signatures II

28 bless {}, $class;
29 }
30

16 / 27

after
1 sub set($self, $set)
2 {
3 delete $self->{object};
4 $self->{set} = $set;
5 return $self;
6 }
7
8 sub object($self, $object)
9 {

10 delete $self->{set};
11 $self->{object} = $object;
12 return $self;
13 }
14
15 sub what($self, $what = undef)
16 {
17 $self->{what} = $what;
18 return $self;
19 }
20
21 sub new($class)
22 {
23 bless {}, $class;
24 }
25

17 / 27

What about documentation

because of OO
sometimes a base method does nothing

1 package OpenBSD::PackingElement;
2 # $self->find_dependencies($state, $l, $checker, $pkgname)
3 sub find_dependencies($, $, $, $, $)
4 {
5 }
6

18 / 27

Problems

Errors happen at runtime, so difficult to catch them all
1 Too few arguments for subroutine 'main::f'
2 (got 2; expected 3) at b line 11.

Much harder on lambdas
1 Too few arguments for subroutine 'main::__ANON__'
2 (got 2; expected 3) at b line 11.
3

(it would be great to annotate the name of the anonymous routine with line
number and filename)

19 / 27

Paradigm shift

perl has long been fuzzy on parameter numbers
some default interfaces use this to "tack on" parameters (e.g. signals)
some OO code has been designed to take advantage of this

20 / 27

Signals

like in C, normal signal handlers get the signal number (but it’s not guaranteed)
There are extra signal handlers for __DIE__ or __WARN__ and these take optional
messages.

21 / 27

Easy solutions

in the worst case, you can slurp stuff with @
but it’s better to track the error and get the right number of parameters
sometimes variations, because of time (a parameter is no longer used)
or variation in parameters used for a constructor subclass

22 / 27

real example

1 package OpenBSD::ProgressMeter;
2 sub new($class, $state)
3 {
4 # now saves state
5 }
6

7 sub for_list($self, $msg, $l, $code) # + $state

23 / 27

serendipity

We can use @ to get parameters through until we have a default value

24 / 27

real example

1

2 package OpenBSD::PackingList;
3

4 sub read($a, $u, $code = \&defaultCode)
5

6 sub fromfile($a, $fname, $code = \&defaultCode)
7

8 package OpenBSD::PackageLocation;
9 sub grabPlist($self, $code = \&OpenBSD::PackingList::defaultCode)

10

11 sub grabPlist($self, @code)

25 / 27

Grepping
1 package OpenBSD::PackingElement::Cwd;
2 sub find_extractible # forwarder
3 {
4 &OpenBSD::PackingElement::Meta::find_extractible;
5 }
1

2 my $handler = sub { # SIGHANDLER
3 $state->{received} = shift;
4 $state->errsay("Interrupted");
5 if ($state->{hardkill}) {
6 delete $state->{hardkill};
7 return;
8 }
9 $state->{interrupted}++;

10 };
11

12 local $SIG{'INT'} = $handler;
13 local $SIG{'QUIT'} = $handler;
14 local $SIG{'HUP'} = $handler;
15 local $SIG{'KILL'} = $handler;
16 local $SIG{'TERM'} = $handler;

26 / 27

coda

insufficient coverage of the code base
should look at Devel::Cover and subclasses
static validation is lagging (perlcritic).
future optimizations.

27 / 27

