

ω -regular Energy Problems

GT DAAL 2024

Sven Dziadek¹ Uli Fahrenberg² Philipp Schlehuber-Caissier²

Inria Paris

LRE, EPITA, France

Energy Büchi Problem

- Timed automata
- Büchi condition
- weighted over integers
 - negative weight: consumption of energy
 - positive weight: collection of energy
- energy bounded
 - from below (battery must not become empty)
 - weakly from above (maximal battery capacity)

Energy Büchi Problem

Does a Büchi accepted feasible run exist?

energy always within bound $\begin{bmatrix} 0, b \end{bmatrix}$ weak upper bound b

Remember, Remember, the 15 September

- Bouyer, F., Larsen, Markey, Srba: Infinite Runs in Weighted Timed Automata with Energy Constraints, FORMATS 2008
- Dziadek, Fahrenb., Schlehuber: Energy Büchi Problems, FM 2023:
 - extend to Büchi conditions
 - fix problems
 - implement everything: TChecker + Spot
- Dziadek, Fahrenb., Schlehuber: ω -regular Energy Problems, submitted
 - extend to Parity condition
 - fix more problems
 - add trace extraction
 - update implementation

^{- ... 2008}

Weighted Timed Büchi Automata

Weighted Timed Büchi Automata

Weighted Timed Büchi Automata

- generalized Büchi acceptance on transitions
- (only) locations are weighted

$$x \leq 35$$

$$x = 35$$

$$x \leftarrow 0$$

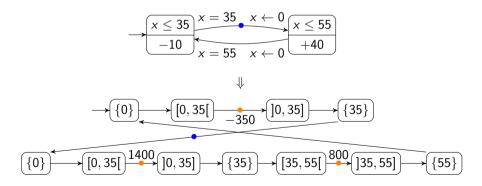
$$x \leq 55$$

$$x \leftarrow 0$$

$$x = 55$$

$$x \leftarrow 0$$

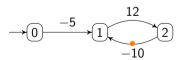
$$x = 40$$


Note: we only handle one clock Energy problems **undecidable** for **four** clocks (Bouyer, Larsen, Markey 2014) **open** for **two** or **three** clocks

Corner-Point Abstraction

One-clock timed automaton \rightarrow untimed automaton

- TChecker computes the zone graph
- compute corner-point abstraction (Behrmann, Fehnker, Hune et al. 2001)
- Zeno-exclusion



Weighted Büchi Automata

Weighted Büchi Automata

Weights		
Given values:	<i>c</i> : initial credit <i>b</i> : weak upper bound	
Weights:	$egin{array}{lll} e_0&=\min(b,c)\ e_{i+1}&=\min(b,e_i+w_i) \end{array}$	for transition weight w_i
Feasible Run		
Always: $e_i \ge 0$		

Feasible with $c \ge 5$ and $b \ge 10$.

Example

Details: Bellman-Ford & Büchi

 Bellman-Ford (BF)

 Recall: BF finds shortest paths
 ⇒ Invert to find maximal energy

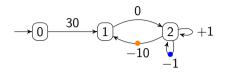
 BF relaxes a distance approximation until solution is found

 BF asserts that no "negative loops" exist
 ⇔ here, positive cycles are desired

 BF not aware of Büchi acceptance

Our solution:

- Decompose strongly connected components
- Treat accepting **back-edges** one-by-one
- modify BF for "energy positive" loops



Our Algorithm

Take a weighted Büchi automaton:

- find strongly connected components (SCC) (we use Couvreur)
- degeneralize SCCs (produces Büchi accepting back edges)
- with modified Bellman-Ford search for feasible lassos:
 - on original graph for maximal prefix energy
 - in SCCs for non-negative cycles including a Back-edge

Note: Energy and Büchi condition cannot be fully separated

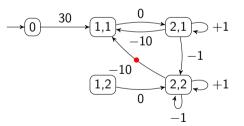
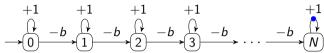
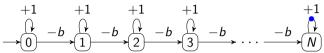
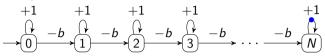



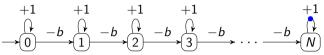
Figure: Degeneralizing SCC $\{1,2\}$ with level 1 rooted in

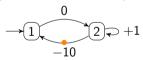


Example

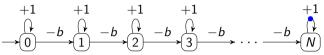

Example

Get weak upper bound b out of complexity

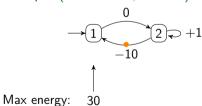

Example


Get weak upper bound *b* out of complexity \Rightarrow After each iteration, positive loop are *pumped*

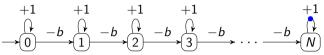
Example



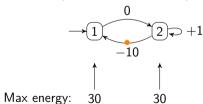
Get weak upper bound *b* out of complexity \Rightarrow After each iteration, positive loop are *pumped*



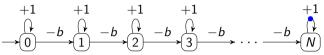
Example



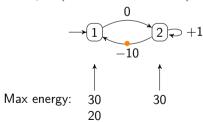
Get weak upper bound *b* out of complexity \Rightarrow After each iteration, positive loop are *pumped*



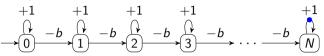
Example



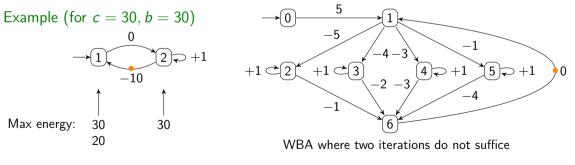
Get weak upper bound *b* out of complexity \Rightarrow After each iteration, positive loop are *pumped*



Example

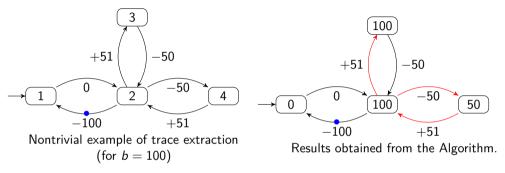


Get weak upper bound *b* out of complexity \Rightarrow After each iteration, positive loop are *pumped*

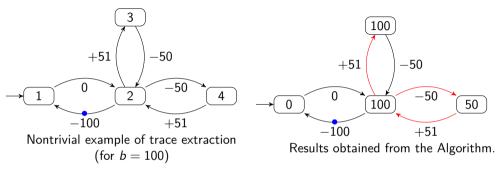


Example

Get weak upper bound *b* out of complexity \Rightarrow After each iteration, positive loop are *pumped*

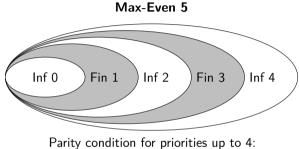


Challenges trace extraction


Challenges trace extraction

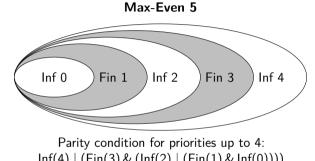
Important information is lost during the iterations.

Challenges trace extraction



Important information is lost during the iterations.

 \Rightarrow Storing all predecessors and launch an adapted backwards-forward search.


From Büchi to Parity

Inf(4) | (Fin(3) & (Inf(2) | (Fin(1) & Inf(0))))

From Büchi to Parity

Inf(4) | (Fin(3) & (Inf(2) | (Fin(1) & Inf(0)))) $\Rightarrow Reduce to Büchi case from most to least important color$

Conclusion

Results on Energy Büchi problems

- 1. Weighted ω -regular automata
 - Modified Bellman-Ford with Couvreur's algorithm
- 2. One-clock weighted timed ω -regular automata
 - Reduce to **1**. using corner-point abstraction
- 3. Solved the trace extraction problem

All algorithms are implemented using TChecker and Spot

Future Work

- edge weights
 - Bouyer, F., Larsen, Markey: Timed automata with observers under energy constraints, HSCC 2010
- Avoid iteration over all maximal states.
- parametric problem: synthesize b and/or c
 - F., Juhl, Larsen, Srba: Energy Games in Multiweighted Automata, ICTAC 2011
 - (in some cases that's easier!)
- implement everything!