Abstract
Assessing the completeness of an underwater 3D reconstruction on-site is crucial as it allows for rescheduling acquisitions, which capture missing data during a mission, avoiding additional costs of a subsequent mission. This assessment needs to rely on a dense point cloud since a sparse cloud lacks detail and a triangulated model can hide gaps. The challenge is to generate a dense cloud with field-deployable tools. Traditional dense reconstruction methods can take several dozen hours on low-capacity systems like laptops or embedded units. To speed up this process, we propose building the dense cloud incrementally within an SfM framework while incorporating data redundancy management to eliminate recalculations and filtering already-processed data. The method evaluates overlap area limits and computes depths by propagating the matching around SeaPoints—the keypoints we design for identifying reliable areas regardless of the quality of the processed underwater images. This produces local partial dense clouds, which are aggregated into a common frame via the SfM pipeline to produce the global dense cloud. Compared to the production of complete dense local clouds, this approach reduces the computation time by about 70 percent while maintaining a comparable final density. The underlying prospect of this work is to enable real-time completeness estimation directly on board, allowing for the dynamic re-planning of the acquisition trajectory.