Publications

Traitement d’images multivariées avec l’arbre des formes

Abstract

L’Arbre des Formes (ToS) est un arbre morphologique qui fournit une représentation hiérarchique de l’image auto-duale et invariante par changement de contraste. De ce fait, il est adapté à de nombreuses applications de traitement d’images. Néanmoins, on se heurte à des problèmes avec l’Arbre des Formes lorsqu’on doit traiter des images couleurs car sa définition tient uniquement en niveaux de gris. Les solutions les plus courantes sont alors d’effectuer un traitement composante par composante (marginal) ou d’imposer un ordre total. Ces solutions ne sont généralement pas satisfaisantes et font survenir des problèmes (des artefacts de couleur, des pertes de propriétés…) Dans cet article, nous insistons sur la nécessité d’une représentation à la fois auto-duale et invariante par changement de contraste et nous proposons une méthode qui construit un Arbre des Formes unique en fusionnant des formes issues des composantes marginales tout en préservant les propriétés intrinsèques de l’arbre. Cette méthode s’affranchit de tout relation d’ordre totale en utilisant uniquement la relation d’inclusion entre les formes et en effectuant une fusion dans l’espace des formes. Finalement, nous montrerons la pertinence de notre méthode et de la structure en les illustrant sur de la simplification d’images et de la segmentation interactive.

Continue reading

Une généralisation du <i>bien-composé</i> à la dimension $n$

Abstract

La notion de bien-composé a été introduite par Latecki en 1995 pour les ensembles et les images 2D et pour les ensembles 3D en 1997. Les images binaires bien-composées disposent d’importantes propriétés topologiques. De plus, de nombreux algorithmes peuvent tirer avantage de ces propriétés topologiques. Jusqu’à maintenant, la notion de bien-composé n’a pas été étudiée en dimension $n$, avec $n > 3$. Dans le travail présenté ici, nous démontrons le théorème fondamental de l’équivalence des connexités pour un ensemble bien-composé, puis nous généralisons la caractérisation des ensembles et des images bien-composés à la dimension $n$.

Continue reading

Tree-based morse regions: A topological approach to local feature detection

By Yongchao Xu, Thierry Géraud, Pascal Monasse, Laurent Najman

2014-10-03

In IEEE Transactions on Image Processing

Abstract

This paper introduces a topological approach to local invariant feature detection motivated by Morse theory. We use the critical points of the graph of the intensity image, revealing directly the topology information as initial “interest” points. Critical points are selected from what we call a tree-based shape-space. Specifically, they are selected from both the connected components of the upper level sets of the image (the Max-tree) and those of the lower level sets (the Min-tree). They correspond to specific nodes on those two trees: (1) to the leaves (extrema) and (2) to the nodes having bifurcation (saddle points). We then associate to each critical point the largest region that contains it and is topologically equivalent in its tree. We call such largest regions the Tree-Based Morse Regions (TBMR). TBMR can be seen as a variant of MSER, which are contrasted regions. Contrarily to MSER, TBMR relies only on topological information and thus fully inherit the invariance properties of the space of shapes (e.g., invariance to affine contrast changes and covariance to continuous transformations). In particular, TBMR extracts the regions independently of the contrast, which makes it truly contrast invariant. Furthermore, it is quasi parameter-free. TBMR extraction is fast, having the same complexity as MSER. Experimentally, TBMR achieves a repeatability on par with state-of-the-art methods, but obtains a significantly higher number of features. Both the accuracy and the robustness of TBMR are demonstrated by applications to image registration and 3D reconstruction.

Continue reading

Improving the model checking of stutter-invariant LTL properties

Abstract

Software systems have become ubiquitous in our everyday life. They replace humans for critical tasks that involve high costs and even human lives. The serious consequences caused by the failure of such systems make crucial the use of rigorous methods for system validation. One of the widely-used formal verification methods is the automata-theoretic approach to model checking. It takes as input a model of the system and a property, and answers if the model satisfies or not the property. To achieve this goal, it translates the negation of the property in an automaton and checks whether the product of the model and this automaton is empty. Although it is automatic, this approach suffers from the combinatorial explosion of the resulting product. To tackle this problem, especially when checking stutter-invariant LTL properties, we firstly improve the two-pass verification algorithm of Testing automata (TA), then we propose a transformation of TA into a normal form (STA) that only requires a single-pass verification algorithm. We also propose a new type of automata: the TGTA. These automata also enable a check in a single-pass and without adding artificial states : it combines the benefits of TA and generalized Büchi automata (TGBA). TGTA improve the explicit and symbolic model checking approaches. In particular, by combining TGTA with the saturation technique, the performances of the symbolic approach has been improved by an order of magnitude compared to TGBA. Used in hybrid approaches TGTA prove complementary to TGBA. All the contributions of this work have been implemented in SPOT and LTS-ITS, respectively, an explicit and a symbolic open source model-checking libraries.

Continue reading

Practical genericity: Writing image processing algorithms both reusable and efficient

By Roland Levillain, Thierry Géraud, Laurent Najman, Edwin Carlinet

2014-09-10

In Progress in pattern recognition, image analysis, computer vision, and applications – proceedings of the 19th iberoamerican congress on pattern recognition (CIARP)

Abstract

An important topic for the image processing and pattern recognition community is the construction of open source and efficient libraries. An increasing number of software frameworks are said to be generic: they allow users to write reusable algorithms compatible with many input image types. However, this design choice is often made at the expense of performance. We present an approach to preserve efficiency in a generic image processing framework, by leveraging data types features. Variants of generic algorithms taking advantage of image types properties can be defined, offering an adjustable trade-off between genericity and efficiency. Our experiments show that these generic optimizations can match dedicated code in terms of execution times, and even sometimes perform better than routines optimized by hand. Digital Topology software should reflect the generality of the underlying mathematics: mapping the latter to the former requires genericity. By designing generic solutions, one can effectively reuse digital topology data structures and algorithms. We propose an image processing framework focused on the Generic Programming paradigm in which an algorithm on the paper can be turned into a single code, written once and usable with various input types. This approach enables users to design and implement new methods at a lower cost, try cross-domain experiments and help generalize results.

Continue reading

Speckle spot detection in ultrasound images: Application to speckle reduction and speckle tracking

By Nicolas Widynski, Thierry Géraud, Damien Garcia

2014-09-10

In Proceedings of the IEEE international ultrasonics symposium (IUS)

Abstract

This paper investigates the speckle spot detection task in ultrasound images. Speckle spots are described by structural criteria: dimensions, shape, and topology. We propose to represent the image using a morphological inclusion tree, from which speckle spots are detected using their structural appearance. This makes the method independent of contrast, and hence robusts to intensity correction. The detection was applied to speckle reduction and speckle tracking, and experiments showed that this approach performs well compared to state-of-the-art methods.

Continue reading

Espaces des formes basés sur des arbres : Définition et applications en traitement d’images et vision par ordinateur

By Yongchao Xu, Thierry Géraud, Laurent Najman

2014-07-01

In Actes du 19ème congrès national sur reconnaissance des formes et l’intelligence artificielle (RFIA)

Abstract

Le cadre classique des filtres connexes consiste à enlever d’un graphe certaines de ses composantes connexes. Pour appliquer ces filtres, il est souvent utile de transformer une image en un arbre de composantes, et on élague cet arbre pour simplifier l’image de départ. Les arbres ainsi formés ont des propriétés remarquables pour la vision par ordinateur. Une première illustration de leur intérêt est la définition d’un détecteur de zones d’intérêt, vraiment invariant aux changements de contraste, qui nous permet d’obtenir des résultats à l’état de l’art en recalage d’images et en reconstruction 3D à base d’images. Poursuivant dans l’utilisation de ces arbres, nous proposons d’élargir le cadre des filtres connexes. Pour cela, nous introduisons la notion d’espaces des formes basés sur des arbres : au lieu de filtrer des composantes connexes du graphe correspondant à l’image, nous proposons de filtrer des composantes connexes du graphe donné par l’arbre des composantes de l’image. Ce cadre général, que nous appelons morphologie basée sur les formes, peut être utilisé pour la détection et la segmentation d’objets, l’obtention de segmentations hiérarchiques, et le filtrage d’images. De nombreuses applications et illustrations montrent l’intérêt de ce cadre.

Continue reading

A comparative review of component tree computation algorithms

By Edwin Carlinet, Thierry Géraud

2014-06-16

In IEEE Transactions on Image Processing

Abstract

Connected operators are morphological tools that have the property of filtering images without creating new contours and without moving the contours that are preserved. Those operators are related to the max-tree and min-tree repre- sentations of images, and many algorithms have been proposed to compute those trees. However, no exhaustive comparison of these algorithms has been proposed so far, and the choice of an algorithm over another depends on many parameters. Since the need for fast algorithms is obvious for production code, we present an in-depth comparison of the existing algorithms in a unique framework, as well as variations of some of them that improve their efficiency. This comparison involves both sequential and parallel algorithms, and execution times are given with respect to the number of threads, the input image size, and the pixel value quantization. Eventually, a decision tree is given to help the user choose the most appropriate algorithm with respect to the user requirements. To favor reproducible research, an online demo allows the user to upload an image and bench the different algorithms, and the source code of every algorithms has been made available.

Continue reading

GMM weights adaptation based on subspace approaches for speaker verification

By Najim Dehak, O. Plchot, M. H. Bahari, L. Burget, H. Van hamme, Réda Dehak

2014-06-16

In Odyssey 2014, the speaker and language recognition workshop

Abstract

In this paper, we explored the use of Gaussian Mixture Model (GMM) weights adaptation for speaker verifica- tion. We compared two different subspace weight adap- tation approaches: Subspace Multinomial Model (SMM) and Non-Negative factor Analysis (NFA). Both techniques achieved similar results and seemed to outperform the retraining maximum likelihood (ML) weight adaptation. However, the training process for the NFA approach is substantially faster than the SMM technique. The i-vector fusion between each weight adaptation approach and the classical i-vector yielded slight improvements on the tele- phone part of the NIST 2010 Speaker Recognition Eval- uation dataset.

Continue reading

Is there a best Büchi automaton for explicit model checking?

By František Blahoudek, Alexandre Duret-Lutz, Mojmír Křetínský, Jan Strejček

2014-06-16

In Proceedings of the 21th international SPIN symposium on model checking of software (SPIN’14)

Abstract

LTL to Büchi automata (BA) translators are traditionally optimized to produce automata with a small number of states or a small number of non-deterministic states. In this paper, we search for properties of Büchi automata that really influence the performance of explicit model checkers. We do that by manual analysis of several automata and by experiments with common LTL-to-BA translators and realistic verification tasks. As a result of these experiences, we gain a better insight into the characteristics of automata that work well with Spin.

Continue reading