Abstract
It is now possible to collect hyperspectral video sequences at a near real-time frame rate. The wealth of spectral, spatial and temporal information of those sequences is appealing for various applications, but classical video processing techniques must be adapted to handle the high dimensionality and huge size of the data to process. In this article, we introduce a novel method based on the hierarchical analysis of hyperspectral video sequences to perform object tracking. This latter operation is tackled as a sequential object detection process, conducted on the hierarchical representation of the hyperspectral video frames. We apply the proposed methodology to the chemical gas plume tracking scenario and compare its performances with state-of-the-art methods, for two real hyperspectral video sequences, and show that the proposed approach performs at least equally well.