Joseph Chazalon

Weakly supervised training for hologram verification in identity documents

By Glen Pouliquen, Guillaume Chiron, Joseph Chazalon, Thierry Géraud, Ahmad Montaser Awal

2024-04-25

In The 18th international conference on document analysis and recognition (ICDAR 2024)

Abstract We propose a method to remotely verify the authenticity of Optically Variable Devices (OVDs), often referred to as “holograms”, in identity documents. Our method processes video clips captured with smartphones under common lighting conditions, and is evaluated on two public datasets: MIDV-HOLO and MIDV-2020. Thanks to a weakly-supervised training, we optimize a feature extraction and decision pipeline which achieves a new leading performance on MIDV-HOLO, while maintaining a high recall on documents from MIDV-2020 used as attack samples.

Continue reading

Automatic vectorization of historical maps: A benchmark

Abstract Shape vectorization is a key stage of the digitization of large-scale historical maps, especially city maps that exhibit complex and valuable details. Having access to digitized buildings, building blocks, street networks and other geographic content opens numerous new approaches for historical studies such as change tracking, morphological analysis and density estimations. In the context of the digitization of Paris atlases created in the 19th and early 20th centuries, we have designed a supervised pipeline that reliably extract closed shapes from historical maps.

Continue reading

A benchmark of nested named entity recognition approaches in historical structured documents

By Solenn Tual, Nathalie Abadie, Joseph Chazalon, Bertrand Duménieu, Edwin Carlinet

2023-06-01

In Proceedings of the international conference on document analysis and recognition (ICDAR 2023)

Abstract Named Entity Recognition (NER) is a key step in the creation of structured data from digitised historical documents. Traditional NER approaches deal with flat named entities, whereas entities are often nested. For example, a postal address might contain a street name and a number. This work compares three nested NER approaches, including two state-of-the-art approaches using Transformer-based architectures. We introduce a new Transformer-based approach based on joint labelling and semantic weighting of errors, evaluated on a collection of 19th-century Paris trade directories.

Continue reading

Linear object detection in document images using multiple object tracking

By Philippe Bernet, Joseph Chazalon, Edwin Carlinet, Alexandre Bourquelot, Élodie Puybareau

2023-06-01

In Proceedings of the international conference on document analysis and recognition (ICDAR 2023)

Abstract Linear objects convey substantial information about document structure, but are challenging to detect accurately because of degradation (curved, erased) or decoration (doubled, dashed). Many approaches can recover some vector representation, but only one closed-source technique introduced in 1994, based on Kalman filters (a particular case of Multiple Object Tracking algorithm), can perform a pixel-accurate instance segmentation of linear objects and enable to selectively remove them from the original image. We aim at re-popularizing this approach and propose: 1.

Continue reading

A benchmark of named entity recognition approaches in historical documents

By Nathalie Abadie, Edwin Carlinet, Joseph Chazalon, Bertrand Duménieu

2022-04-07

In Proceedings of the 15th IAPR international workshop on document analysis system

Abstract Named entity recognition (NER) is a necessary step in many pipelines targeting historical documents. Indeed, such natural language processing techniques identify which class each text token belongs to, e.g. “person name”, “location”, “number”. Introducing a new public dataset built from 19th century French directories, we first assess how noisy modern, off-the-shelf OCR are. Then, we compare modern CNN- and Transformer-based NER techniques which can be reasonably used in the context of historical document analysis.

Continue reading

QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation — Analysis of ranking scores and benchmarking results

By Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Linmin Pei, Murat AK, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh Hoang Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Élodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

2022-01-09

In Journal of Machine Learning for Biomedical Imaging (MELBA)

Abstract Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation.

Continue reading

Introducing the boundary-aware loss for deep image segmentation

By Minh Ôn Vũ Ngọc, Yizi Chen, Nicolas Boutry, Joseph Chazalon, Edwin Carlinet, Jonathan Fabrizio, Clément Mallet, Thierry Géraud

2021-11-28

In Proceedings of the 32nd british machine vision conference (BMVC)

Abstract Most contemporary supervised image segmentation methods do not preserve the initial topology of the given input (like the closeness of the contours). One can generally remark that edge points have been inserted or removed when the binary prediction and the ground truth are compared. This can be critical when accurate localization of multiple interconnected objects is required. In this paper, we present a new loss function, called, Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut algorithm.

Continue reading

ICDAR 2021 competition on historical map segmentation

By Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret, Bertrand Duménieu, Clément Mallet, Thierry Géraud, Vincent Nguyen, Nam Nguyen, Josef Baloun, Ladislav Lenc, Pavel Král

2021-05-17

In Proceedings of the 16th international conference on document analysis and recognition (ICDAR’21)

Abstract This paper presents the final results of the ICDAR 2021 Competition on Historical Map Segmentation (MapSeg), encouraging research on a series of historical atlases of Paris, France, drawn at 1/5000 scale between 1894 and 1937. The competition featured three tasks, awarded separately. Task 1 consists in detecting building blocks and was won by the L3IRIS team using a DenseNet-121 network trained in a weakly supervised fashion. This task is evaluated on 3 large images containing hundreds of shapes to detect.

Continue reading

Revisiting the Coco panoptic metric to enable visual and qualitative analysis of historical map instance segmentation

By Joseph Chazalon, Edwin Carlinet

2021-05-17

In Proceedings of the 16th international conference on document analysis and recognition (ICDAR’21)

Abstract Segmentation is an important task. It is so important that there exist tens of metrics trying to score and rank segmentation systems. It is so important that each topic has its own metric because their problem is too specific. Does it? What are the fundamental differences with the ZoneMap metric used for page segmentation, the COCO Panoptic metric used in computer vision and metrics used to rank hierarchical segmentations? In this paper, while assessing segmentation accuracy for historical maps, we explain, compare and demystify some the most used segmentation evaluation protocols.

Continue reading

Vectorization of historical maps using deep edge filtering and closed shape extraction

By Yizi Chen, Edwin Carlinet, Joseph Chazalon, Clément Mallet, Bertrand Duménieu, Julien Perret

2021-05-17

In Proceedings of the 16th international conference on document analysis and recognition (ICDAR’21)

Abstract Maps have been a unique source of knowledge for centuries. Such historical documents provide invaluable information for analyzing the complex spatial transformation of landscapes over important time frames. This is particularly true for urban areas that encompass multiple interleaved research domains (social sciences, economy, etc.). The large amount and significant diversity of map sources call for automatic image processing techniques in order to extract the relevant objects under a vectorial shape.

Continue reading