Lê Duy Huỳnh

VerSe: A vertebrae labelling and segmentation benchmark for multi-detector CT images

Abstract Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data.

Continue reading

Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy

Abstract The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in developing reliable computer aided detection and diagnosis endoscopy systems and suggest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying subtle precancerous precursors and cancer abnormalities.

Continue reading

Connected filters on generalized shape-spaces

By Lê Duy Huỳnh, Nicolas Boutry, Thierry Géraud

2019-09-20

In Pattern Recognition Letters

Abstract Classical hierarchical image representations and connected filters work on sets of connected components (CC). These approaches can be defective to describe the relations between disjoint objects or partitions on images. In practice, objects can be made of several connected components in images (due to occlusions for example), therefore it can be interesting to be able to take into account the relationship between these components to be able to detect the whole object.

Continue reading

Taking into account inclusion and adjacency information in morphological hierarchical representations, with application to the extraction of text in natural images and videos.

Abstract The inclusion and adjacency relationship between image regions usually carry contextual information. The later is widely used since it tells how regions are arranged in images. The former is usually not taken into account although it parallels the object-background relationship. The mathematical morphology framework provides several hierarchical image representations. They include the Tree of Shapes (ToS), which encodes the inclusion of level-line, and the hierarchies of segmentation (e.g., alpha-tree, BPT), which is useful in the analysis of the adjacency relationship.

Continue reading

Morphological hierarchical image decomposition based on Laplacian 0-crossings

By Lê Duy Huỳnh, Yongchao Xu, Thierry Géraud

2017-02-23

In Mathematical morphology and its application to signal and image processing – proceedings of the 13th international symposium on mathematical morphology (ISMM)

Abstract A method of text detection in natural images, to be turn into an effective embedded software on a mobile device, shall be both efficient and lightweight. We observed that a simple method based on the morphological Laplace operator can do the trick: we can construct in quasi-linear time a hierarchical image decomposition / simplification based on its 0-crossings, and search for some text in the resulting tree. Yet, for this decomposition to be sound, we need “0-crossings” to be Jordan curves, and to that aim, we rely on some discrete topology tools.

Continue reading

Morphology-based hierarchical representation with application to text segmentation in natural images

By Lê Duy Huỳnh, Yongchao Xu, Thierry Géraud

2016-07-13

In Proceedings of the 23st international conference on pattern recognition (ICPR)

Abstract Many text segmentation methods are elaborate and thus are not suitable to real-time implementation on mobile devices. Having an efficient and effective method, robust to noise, blur, or uneven illumination, is interesting due to the increasing number of mobile applications needing text extraction. We propose a hierarchical image representation, based on the morphological Laplace operator, which is used to give a robust text segmentation. This representation relies on several very sound theoretical tools; its computation eventually translates to a simple labeling algorithm, and for text segmentation and grouping, to an easy tree-based processing.

Continue reading